
PPDDL1.0: The Language for the Probabilistic Part of IPC-4

Håkan L. S. Younes
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA

lorens@cs.cmu.edu

Michael L. Littman
Department of Computer Science

Rutgers University
Piscataway, NJ 08854, USA

mlittman@cs.rutgers.edu

Introduction
A standard domain description language, PDDL (Ghallabet
al. 1998; McDermott 2000; Fox & Long 2003), for deter-
ministic planning domains has simplified sharing of domain
models and problems in the planning community, and has
enabled direct comparisons of different planning systems.
As a result, there has been considerable progress in plan-
ning research with deterministic domain models since the
first International Planning Competition in 1998.

The 4th International Planning Competition includes a
probabilistic track for the first time in an attempt to create
a common platform for the evaluation of probabilistic and
decision-theoretic planning systems. This document briefly
describes the input language, PPDDL1.0, that was used for
the probabilistic track. PPDDL1.0 is essentially a syntac-
tic extension of levels 1 and 2 of PDDL2.1 (Fox & Long
2003). We assume that the reader is familiar with PDDL2.1,
so focus on the new language features, which include prob-
abilistic effects and rewards. The semantics of a PPDDL1.0
planning problem is given in terms of a Markov decision
process (Howard 1960).

Note that, unlike PDDL2.1, we do not impose a specific
structure on plans in PPDDL1.0. Planning systems are eval-
uated using a client-server model in the probabilistic track of
the competition. During evaluation of a planner, the server
send a state to the client (planning system), which in return
sends an action to be executed in the given state. The prob-
lem of plan representation is left entirely to the planning sys-
tems.

Probabilistic Effects
In order to define probabilistic and decision-theoretic plan-
ning problems, we need to add support for probabilistic ef-
fects. The syntax for probabilistic effects is

(probabilistic p1 e1 . . . pk ek)

meaning that effectei occurs with probabilitypi. We require
that the constraintspi ≥ 0 and

∑k
i=1 pi = 1 are fulfilled: a

probabilistic effect declares an exhaustive set of probability-
weighted outcomes. However, we allow a probability-effect
pair to be left out if the effect is empty. In other words,

(probabilistic p1 e1 . . . pl el)

with
∑l

i=1 pi ≤ 1 is syntactic sugar for

Name Type Init 1 Init 2
bomb-in-packagepackage1 boolean true false
bomb-in-packagepackage2 boolean false true
toilet-clogged boolean false false
bomb-defused boolean false false

Table 1: State variables and their initial values for the
“Bomb and Toilet” problem.

(probabilistic p1 e1 . . . pl el q (and))

with q = 1−∑l
i=1 pi. For example, the effect

(probabilistic 0.9 (clogged))

means that with probability0.9 the state variableclogged
becomes true in the next state, while with probability0.1 the
state remains unchanged. Outcomes are not required to be
mutually exclusive. A new requirements flag is introduced
to signal that support for probabilistic effects is required:

:probabilistic-effects

Figure 1 shows an encoding in PPDDL of the “Bomb
and Toilet” example described by Kushmerick, Hanks, &
Weld (1995). In this problem, there are two packages,
one of which contains a bomb. The bomb can be defused
by dunking the package containing the bomb in the toilet.
There is a0.05 probability of the toilet becoming clogged
when a package is placed in it. The problem definition in
Figure 1 also shows that initial conditions in PPDDL can
be probabilistic. In this particular example we define two
possible initial states with equal probability (0.5) of be-
ing the true initial state. Table 1 lists the state variables
for the “Bomb and Toilet” problem and their values in the
two possible initial states. Intuitively, we can think of the
initial conditions of a PPDDL planning problem as being
the effects of an action forced to be scheduled right before
time 0. Also, note that the goal of the problem involves
negation, which is why the problem definition declares the
:negative-preconditions requirements flag.

PPDDL allows arbitrary nesting of conditional and prob-
abilistic effects. This is in contrast to popular propositional
encodings, such as probabilistic STRIPS operators (PSOs)
(Kushmerick, Hanks, & Weld 1995) and factored PSOs
(Dearden & Boutilier 1997), which do not allow conditional
effects nested inside probabilistic effects. While arbitrary

1

(define (domain bomb-and-toilet)
(:requirements :conditional-effects :probabilistic-effects)
(:predicates (bomb-in-package ?pkg) (toilet-clogged) (bomb-defused))
(:action dunk-package

:parameters (?pkg)
:effect (and (when (bomb-in-package ?pkg) (bomb-defused))

(probabilistic 0.05 (toilet-clogged)))))

(define (problem bomb-and-toilet)
(:domain bomb-and-toilet)
(:requirements :negative-preconditions)
(:objects package1 package2)
(:init (probabilistic 0.5 (bomb-in-package package1)

0.5 (bomb-in-package package2)))
(:goal (and (bomb-defused) (not (toilet-clogged)))))

Figure 1: PPDDL encoding of “Bomb and Toilet” example.

nesting does not add to the expressiveness of the language,
it can allow for exponentially more compact representations
of certain effects given the same set of state variables and ac-
tions (Rintanen 2003). However, any PPDDL action can be
translated into asetof PSOs with at most a polynomial in-
crease in size of the representation. Consequently, it follows
from the results of Littman (1997) that PPDDL is represen-
tationally equivalent to dynamic Bayesian networks (Dean
& Kanazawa 1989), which is another popular representation
for MDP planning problems.

Rewards and Plan Objectives
Markovian rewards, associated with state transitions, can be
encoded using fluents. PPDDL reserves the fluentreward ,
accessed as(reward) or reward , to represent the total
accumulated reward since the start of execution. Rewards
are associated with state transitions through update rules in
action effects. The use of thereward fluent is restricted to
action effects of the form

(〈additive-op〉 〈reward fluent〉 〈f-exp〉)

where 〈additive-op〉 is either increase or decrease ,
and 〈f-exp〉 is a numeric expression not involvingreward .
Action preconditions and effect conditions are not allowed
to refer to thereward fluent, which means that the accu-
mulated reward does not have to be considered part of the
state space. The initial value ofreward is zero. These re-
strictions on the use of thereward fluent allow a planner to
handle domains with rewards, without having to implement
full support for fluents.

The requirements flag,:rewards , is introduced to sig-
nal that support for Markovian rewards is required. Do-
mains that require both probabilistic effects and rewards
can declare the:mdp requirements flag, which implies
:probabilistic-effects and:rewards .

Figure 2 shows part of the PPDDL encoding of a coffee
delivery domain described by Dearden & Boutilier (1997).
A reward of 0.8 is awarded if the user has coffee when
the “buy-coffee” action is executed, and a reward of0.2
is awarded when “buy-coffee” is executed in a state where

is-wet is false. Note that a total reward of1.0 can be
awarded as a result of executing the “buy-coffee” action if
it is executed in a state where bothuser -has-coffee and
¬is-wet hold.

Action effects with inconsistent transition rewards are not
permitted. For example, the effect(probabilistic
0.5 (increase (reward) 1)) is semantically in-
valid because it associates a reward of both1 and 0 to a
self-transition.

Regular PDDL goals are used to express goal-type per-
formance objectives. A goal statement(:goal φ) for a
probabilistic planning problem encodes the objective that
the probability of achievingφ should be maximized, unless
an explicit optimization metric is specified for the planning
problem.

For planning problems instantiated from a domain declar-
ing the :rewards requirement, the default plan objective
is to maximize the expected reward. A goal statement in the
specification of a reward oriented planning problem identi-
fies a set of absorbing states. In addition to transition re-
wards specified in action effects, it is possible to associate a
one-time reward for entering a goal state. This is done using
the(:goal-reward f) construct, wheref is a numeric
expression.

In general, a statement(:metric maximize f) in a
problem definition means that the expected value off should
be maximized. PPDDL definesgoal-probability as
a special optimization metric that can be used to explicitly
specify that the plan objective is to maximize (or minimize)
the probability of goal achievement.

Formal Semantics
We present a formal semantics for PPDDL planning prob-
lems in terms of a mapping to a probabilistic transition sys-
tem with rewards. A planning problem defines a set of state
variablesV , possibly containing both Boolean and numeric
state variables. An assignment of values to state variables
defines a state, and the state spaceS of the planning prob-
lem is the set of states representing all possible assignments
of values to variables. In addition toV , a planning prob-

2

(define (domain coffee-delivery)
(:requirements :negative-preconditions :disjunctive-preconditions

:conditional-effects :mdp)
(:predicates (in-office) (raining) (has-umbrella) (is-wet)

(has-coffee) (user-has-coffee))
(:action buy-coffee

:effect (and (when (not (in-office)) (probabilistic 0.8 (has-coffee)))
(when (user-has-coffee) (increase (reward) 0.8))
(when (not (is-wet)) (increase (reward) 0.2))))

...)

Figure 2: Part of PPDDL encoding of “Coffee Delivery” domain.

lem defines an initial-state distributionp0 : S → [0, 1] with∑
s∈S p0(s) = 1 (i.e. p0 is a probability distribution over

states), a formulaφ overV characterizing a set of goal states
G = {s | s |= φ}, a one-time rewardrG associated with en-
tering a goal state, and a set of actionsA instantiated from
PPDDL action schemata. For goal-directed planning prob-
lems, without explicit rewards, we userG = 1.

An actiona ∈ A consists of a preconditionφa and an
effect ea. Action a is applicable in a states if and only if
s |= φa. It is an error to applya to a state such thats 6|=
φa. This is consistent with the semantics of PDDL2.1 (Fox
& Long 2003) and permits the modeling of forced chains
of actions. Effects are recursively defined as follows (cf.
Rintanen 2003):

1. > is the null-effect, represented in PPDDL by(and) .

2. b and¬b are effects ifb ∈ V is a Boolean state variable.

3. x ← f is an effect ifx ∈ V is a numeric state variable
andf is a real-valued function on numeric state variables.

4. r ↑ f is an effect iff is a real-valued function on numeric
state variables.

5. e1 ∧ . . . ∧ en is an effect ife1, . . . , en are effects.

6. c�e is an effect ifc is a formula overV ande is an effect.

7. p1e1| . . . |pnen is an effect ife1, . . . , en are effects,pi ≥ 0
for all i ∈ {1, . . . , n}, and

∑n
i=1 pi = 1.

Items 2 through 4 are referred to assimple effect. The effect
b sets the Boolean state variableb to true in the next state,
while ¬b setsb to false in the next state. Forx ← f , the
value off in the current state becomes the value of the nu-
meric state variablex in the next state. Effects of the form
r ↑ f are used to associate rewards with transitions as de-
scribed below.

An actiona = 〈φa, ea〉 defines a transition probability
matrixPa and a transition reward matrixRa, with pa

ij being
the probability of transitioning to statej when applyinga
in statei, andra

ij being the reward associated with the state
transition fromi to j when caused bya. We can compute
Pa andRa by first translatingea into an effect of the form
p1e1| . . . |pnen, where eachei is a deterministic effect. Rin-
tanen (2003) calls this form Unary Nondeterminism Normal
Form. Any effecte can be translated into this form by using
the top four equivalences in Figure 3.

We further rewrite the effect of an action by translating
eachei into an effect of the form(ci1 � ei1) ∧ . . .∧ (cini

�

eini
), where eacheij is a conjunction of simple effects and

the conditions are mutually exclusive and exhaustive (i.e.
cij ∧ cik ≡ ⊥ for all j 6= k and

∨ni

j=1 cij ≡ >). The bottom
four equivalences in Figure 3 allow us to perform the desired
translation.

An effect of the formc � e, wheree is a conjunction of
simple effects, defines a set of state transitions. We assume
that e is consistent. Actions with inconsistent effects are
not valid PPDDL actions, and care should be taken when
designing a PPDDL domain to ensure that no instantiations
of action schemata can have inconsistent effects. A con-
junction of simple effects is inconsistent if it contains both
b and¬b, or multiplenon-commutativeupdates of a single
numeric state variable. Two effectsx ← f andx ← f ′ are
commutative iff(s[x = f ′(s)]) = f ′(s[x = f(s)]), where
f(s) is the value off evaluated in states ands[x = y] de-
notes a state with all state variables having the same value
as in states, except forx which has valuey, i.e. numeric
effects are commutative if they are insensitive to ordering.
Under these assumptions, the following function can be de-
fined:

τ(s, s′,>)=̇s′

τ(s, s′, b)=̇s′[b = >]

τ(s, s′,¬b)=̇s′[b = ⊥]

τ(s, s′, x← f)=̇s′[x = f(s)]

τ(s, s′, r ↑ f)=̇s′

τ(s, s′, e1 ∧ e2)=̇τ(s, τ(s, s′, e1), e2)

We can useτ to describe the set of state transitions defined
by the effectc � e:

T (c � e) = {〈s, s′〉|s |= c ands′ = τ(s, s, e)}.
Given this definition ofT (c � e), we can compute a tran-
sition matrixTij for eachcij � eij . The element at rows
and columns′ of Tij is 1 if 〈s, s′〉 ∈ T (cij � eij), and0
otherwise. Since we have ensured that the conditionscij are
mutually exclusive, we getPa =

∑n
i=1 piTi as the transi-

tion probability matrix for actiona, whereTi =
∑ni

j=1 Tij .
Finally, we need to make all states that satisfy the goal con-
dition φ of the problem absorbing. This is accomplished by
modifying Pa: for eachs such thats |= φ, we set the entry
at rows and columns to 1 and the remaining entries on the
same row to0.

3

e ≡1e

e ∧ (p1e1| . . . |pken) ≡p1(e ∧ e1)| . . . |pn(e ∧ en)
c � (p1e1| . . . |pnen) ≡p1(c � e1)| . . . |pn(c � en)

p1(p′1e
′
1| . . . |p′ke′k)|p2e2| . . . |pnen ≡(p1p

′
1)e1| . . . |(p1p

′
k)e′k|p2e2| . . . |pnen

e ≡>� e

c � e ≡(c � e) ∧ (¬c �>)

c � (c′ � e) ≡(c ∧ c′) � e

(c1 � e1) ∧ (c2 � e2) ≡((c1 ∧ c2) � (e1 ∧ e2)) ∧ ((c1 ∧ ¬c2) � e1)
∧ ((¬c1 ∧ c2) � e2) ∧ ((¬c1 ∧ ¬c2) �>)

Figure 3: Effect equivalences.

The reward associated with a conjunction of simple ef-
fects can be defined as follows:

r(s,>)=̇0
r(s, b)=̇0

r(s,¬b)=̇0
r(s, x← f)=̇0
r(s, r ↑ f)=̇f(s)

r(s, e1 ∧ e2)=̇r(s, e1) + e(s, e2)

The effectcij � eij associates rewardr(s, eij) with each
transition〈s, s′〉 ∈ T (cij � eij). We define a transition re-
ward matrixRij for cij � eij . The element at rows and
columns′ of Rij is r(s, eij) for s′ = τ(s, s, eij) and0 if
〈s, s′〉 6∈ Tij . We then sum over allcij � eij to get a transi-
tion reward matrix forei: Ri =

∑ni

j=1 Rij .
The same transition may occur in multiple outcomes of

the effectp1e1| . . . |pnen, and we require the reward for a
specific transition to be consistent across outcomes. Let•
represent the fact that the reward is undefined for a transi-
tion. We defineR̃i to beRi with an element at rows and
columns′ set to• if the element at rows and columns′ of
Ti is zero (i.e.ei does not define a transition froms to s′).
We define an element-wise matrix operator� as follows:

• � x=̇x

x� •=̇x

x� x=̇x

x� y=̇error if x 6= y

We can now define the transition reward matrix for actiona:
Ra = RG +

⊙n
i=1 R̃i. RG represents the one-time reward

associated with goal states. The entry at rows and column
s′ of RG is set torG if s 6|= φ ands′ |= φ, and0 otherwise.
The transition reward matrix is well-defined if and only if
the transition rewards are consistent across all outcomes of
an action.

References
Dean, T., and Kanazawa, K. 1989. A model for reason-
ing about persistence and causation.Computational Intel-

ligence5(3):142–150.
Dearden, R., and Boutilier, C. 1997. Abstraction and
approximate decision-theoretic planning.Artificial Intel-
ligence89(1–2):219–283.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains.Journal
of Artificial Intelligence Research20:61–124.
Ghallab, M.; Howe, A. E.; Knoblock, C. A.; McDermott,
D.; Ram, A.; Veloso, M. M.; Weld, D. S.; and Wilkins,
D. 1998. PDDL—the planning domain definition lan-
guage. Technical Report CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control, New
Haven, CT.
Howard, R. A. 1960.Dynamic Programming and Markov
Processes. New York, NY: John Wiley & Sons.
Kushmerick, N.; Hanks, S.; and Weld, D. S. 1995. An
algorithm for probabilistic planning.Artificial Intelligence
76(1–2):239–286.
Littman, M. L. 1997. Probabilistic propositional plan-
ning: Representations and complexity. InProc. Fourteenth
National Conference on Artificial Intelligence, 748–754.
Providence, RI: American Association for Artificial Intel-
ligence.
McDermott, D. 2000. The 1998 AI planning systems com-
petition. AI Magazine21(2):35–55.
Rintanen, J. 2003. Expressive equivalence of formalism
for planning with sensing. In Giunchiglia, E.; Muscettola,
N.; and Nau, D. S., eds.,Proc. Thirteenth International
Conference on Automated Planning and Scheduling, 185–
194. Trento, Italy: AAAI Press.

4

