PPDDL1.0: The Language for the Probabilistic Part of IPC-4

Hakan L. S. Younes
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA
lorens@cs.cmu.edu

Introduction

A standard domain description language, PDDL (Ghadtab

al. 1998; McDermott 2000; Fox & Long 2003), for deter-
ministic planning domains has simplified sharing of domain
models and problems in the planning community, and has
enabled direct comparisons of different planning systems.
As a result, there has been considerable progress in plan-
ning research with deterministic domain models since the
first International Planning Competition in 1998.

The 4th International Planning Competition includes a
probabilistic track for the first time in an attempt to create
a common platform for the evaluation of probabilistic and
decision-theoretic planning systems. This document briefly
describes the input language, PPDDL1.0, that was used for
the probabilistic track. PPDDL1.0 is essentially a syntac-
tic extension of levels 1 and 2 of PDDL2.1 (Fox & Long
2003). We assume that the reader is familiar with PDDL2.1,
so focus on the new language features, which include prob-
abilistic effects and rewards. The semantics of a PPDDL1.0
planning problem is given in terms of a Markov decision
process (Howard 1960).

Note that, unlike PDDL2.1, we do not impose a specific
structure on plans in PPDDL1.0. Planning systems are eval-
uated using a client-server model in the probabilistic track of
the competition. During evaluation of a planner, the server
send a state to the client (planning system), which in return
sends an action to be executed in the given state. The prob-
lem of plan representation is left entirely to the planning sys-
tems.

Probabilistic Effects

In order to define probabilistic and decision-theoretic plan-
ning problems, we need to add support for probabilistic ef-
fects. The syntax for probabilistic effects is

(probabilistic pPL €1 ... P €r)

meaning that effeet; occurs with probability,;. We require

that the constraintg; > 0 andezlpi = 1 are fulfilled: a
probabilistic effect declares an exhaustive set of probability-
weighted outcomes. However, we allow a probability-effect

pair to be left out if the effect is empty. In other words,
(probabilistic pL el ... P oe)

with 2!, p; < 1is syntactic sugar for

Michael L. Littman
Department of Computer Science
Rutgers University
Piscataway, NJ 08854, USA
mlittman@cs.rutgers.edu

Name Type | Initl | Init2
bomb-in-package g1 | POOlEAN] true | false
bomb-in-package ,cmge2 | DOOlEAN| false | true
toilet-clogged boolean| false| false
bomb-defused boolean| false| false

Table 1: State variables and their initial values for the
“Bomb and Toilet” problem.

(probabilistic p1 er ... pp e g (and))

with g = 1 — 3'_, p;. For example, the effect
(probabilistic 0.9 (clogged))

means that with probability.9 the state variablelogged
becomes true in the next state, while with probabilitythe

state remains unchanged. Outcomes are not required to be
mutually exclusive. A new requirements flag is introduced
to signal that support for probabilistic effects is required:

:probabilistic-effects

Figure 1 shows an encoding in PPDDL of the “Bomb
and Toilet” example described by Kushmerick, Hanks, &
Weld (1995). In this problem, there are two packages,
one of which contains a bomb. The bomb can be defused
by dunking the package containing the bomb in the toilet.
There is a0.05 probability of the toilet becoming clogged
when a package is placed in it. The problem definition in
Figure 1 also shows that initial conditions in PPDDL can
be probabilistic. In this particular example we define two
possible initial states with equal probabilit9.§) of be-
ing the true initial state. Table 1 lists the state variables
for the “Bomb and Toilet” problem and their values in the
two possible initial states. Intuitively, we can think of the
initial conditions of a PPDDL planning problem as being
the effects of an action forced to be scheduled right before
time 0. Also, note that the goal of the problem involves
negation, which is why the problem definition declares the
:negative-preconditions requirements flag.

PPDDL allows arbitrary nesting of conditional and prob-
abilistic effects. This is in contrast to popular propositional
encodings, such as probabilistic STRIPS operators (PSOs)
(Kushmerick, Hanks, & Weld 1995) and factored PSOs
(Dearden & Boutilier 1997), which do not allow conditional
effects nested inside probabilistic effects. While arbitrary

(define (domain bomb-and-toilet)
(:requirements :conditional-effects :probabilistic-effects)
(:predicates (bomb-in-package 7?pkg) (toilet-clogged) (bomb-defused))
(zaction dunk-package
:parameters (?pkg)
.effect (and (when (bomb-in-package ?pkg) (bomb-defused))
(probabilistic 0.05 (toilet-clogged)))))

(define (problem bomb-and-toilet)
(:domain bomb-and-toilet)
(:requirements :negative-preconditions)
(:objects packagel package2)
(:init (probabilistic 0.5 (bomb-in-package packagel)
0.5 (bomb-in-package package?)))
(:goal (and (bomb-defused) (not (toilet-clogged)))))

Figure 1: PPDDL encoding of “Bomb and Toilet” example.

nesting does not add to the expressiveness of the language,is-wet is false. Note that a total reward df0 can be

it can allow for exponentially more compact representations awarded as a result of executing the “buy-coffee” action if
of certain effects given the same set of state variables and ac-it is executed in a state where bother-has-coffee and
tions (Rintanen 2003). However, any PPDDL action can be —is-wet hold.

translated into @&etof PSOs with at most a polynomial in- Action effects with inconsistent transition rewards are not
crease in size of the representation. Consequently, it follows permitted. For example, the effe@probabilistic
from the results of Littman (1997) that PPDDL is represen- 0.5 (increase (reward) 1)) is semantically in-

tationally equivalent to dynamic Bayesian networks (Dean valid because it associates a reward of bbtAnd 0 to a
& Kanazawa 1989), which is another popular representation self-transition.

for MDP planning problems. Regular PDDL goals are used to express goal-type per-
formance objectives. A goal statemdrgoal ¢) for a
Rewards and Plan Objectives probabilistic planning problem encodes the objective that

the probability of achieving should be maximized, unless
an explicit optimization metric is specified for the planning
problem.

For planning problems instantiated from a domain declar-
ing the:rewards requirement, the default plan objective
is to maximize the expected reward. A goal statement in the
specification of a reward oriented planning problem identi-
fies a set of absorbing states. In addition to transition re-

Markovian rewards, associated with state transitions, can be
encoded using fluents. PPDDL reserves the fluentrd,
accessed ageward) orreward , to represent the total
accumulated reward since the start of execution. Rewards
are associated with state transitions through update rules in
action effects. The use of theward fluent is restricted to
action effects of the form

((additive-op (reward fluent (f-exp) wards specified in action effects, it is possible to associate a
where (additive-op is eitherincrease or decrease one-time reward for entering a goal state. This is done using
and (f-exp is a numeric expression not involvingward. the (:goal-reward f) construct, wherg’ is a numeric
Action preconditions and effect conditions are not allowed exlpressmn.l tat metri - .
to refer to thereward fluent, which means that the accu- h general, a sta eme(imetric maximize f)ina
mulated reward does not have to be considered part of the Problem definition means that the expected valugstiould

be maximized. PPDDL definagoal-probability as

state space. The initial value efward is zero. These re-
strictions on the use of theward fluent allow a planner to
handle domains with rewards, without having to implement
full support for fluents.
The requirements flagrewards , is introduced to sig- .
nal that support for Markovian rewards is required. Do- Formal Semantics
mains that require both probabilistic effects and rewards We present a formal semantics for PPDDL planning prob-
can declare themdp requirements flag, which implies lems in terms of a mapping to a probabilistic transition sys-
:probabilistic-effects and:rewards . tem with rewards. A planning problem defines a set of state
Figure 2 shows part of the PPDDL encoding of a coffee variablesV, possibly containing both Boolean and numeric
delivery domain described by Dearden & Boutilier (1997). state variables. An assignment of values to state variables
A reward of 0.8 is awarded if the user has coffee when defines a state, and the state sp&aaf the planning prob-
the “buy-coffee” action is executed, and a rewardOdf lem is the set of states representing all possible assignments
is awarded when “buy-coffee” is executed in a state where of values to variables. In addition g, a planning prob-

a special optimization metric that can be used to explicitly
specify that the plan objective is to maximize (or minimize)
the probability of goal achievement.

(define (domain coffee-delivery)

(:requirements :negative-preconditions :disjunctive-preconditions

:conditional-effects :mdp)

(:predicates (in-office) (raining) (has-umbrella) (is-wet)

(has-coffee) (user-has-coffee))
(:action buy-coffee

.effect (and (when (not (in-office)) (probabilistic 0.8 (has-coffee)))
(when (user-has-coffee) (increase (reward) 0.8))
(when (not (is-wet)) (increase (reward) 0.2))))

Figure 2: Part of PPDDL encoding of “Coffee Delivery” domain.

lem defines an initial-state distributign : S — [0, 1] with
> sesPo(s) = 1 (i.e. po is a probability distribution over
states), a formula overV characterizing a set of goal states
G = {s| s = ¢}, a one-time reward associated with en-
tering a goal state, and a set of actiohénstantiated from
PPDDL action schemata. For goal-directed planning prob-
lems, without explicit rewards, we usge = 1.

An actiona € A consists of a precondition, and an
effecte,. Action a is applicable in a state if and only if
s | ¢q. Itis an error to apply: to a state such that j~=
¢.. This is consistent with the semantics of PDDL2.1 (Fox
& Long 2003) and permits the modeling of forced chains
of actions. Effects are recursively defined as follows (cf.
Rintanen 2003):

1. T is the null-effect, represented in PPDDL {@and) .
2. band—b are effects ih € V is a Boolean state variable.

3. ¢z «— fis an effect ifxr € V is a numeric state variable
andf is a real-valued function on numeric state variables.

4. r 1 fisan effectiff is a real-valued function on numeric
state variables.

5. e1A...Ne,isan effectifeq,...,e, are effects.

6. cr>eis an effect ifc is a formula oveV ande is an effect.

7. pre1] ... |pnen isaneffectifes, ..., e, are effectsp; > 0
foralli e {1,...,n},and>_" , p; = 1.

Items 2 through 4 are referred tosimple effectThe effect

b sets the Boolean state variabl¢o true in the next state,

while —b setsb to false in the next state. Far «— f, the

value of f in the current state becomes the value of the nu-
meric state variable in the next state. Effects of the form

r 1 f are used to associate rewards with transitions as de-

scribed below.

An actiona = (¢,,e,) defines a transition probability
matrix 1, and a transition reward matrig,,, with p{; being
the probability of transitioning to statgwhen applymga
in state:, andr{; being the reward associated with the state
transition from: to 5 when caused by. We can compute
P, and R, by first translating, into an effect of the form
pie1] ... |pnen, Where eacle; is a deterministic effect. Rin-
tanen (2003) calls this form Unary Nondeterminism Normal
Form. Any effecte can be translated into this form by using
the top four equivalences in Figure 3.

We further rewrite the effect of an action by translating
eache; into an effect of the fornfc;; > e;1) A ... A (¢in, >

ein;)» Where eacle;; is a conjunction of simple effects and
the conditions are mutually exclusive and exhaustive (i.e.
cijNeip = Lforallj #k and\/}i1 ¢;j = T). The bottom
four equivalences in Figure 3 allow us to perform the desired
translation.

An effect of the forme > e, wheree is a conjunction of
simple effects, defines a set of state transitions. We assume
that e is consistent. Actions with inconsistent effects are
not valid PPDDL actions, and care should be taken when
designing a PPDDL domain to ensure that no instantiations
of action schemata can have inconsistent effects. A con-
junction of simple effects is inconsistent if it contains both
b and—b, or multiple non-commutativeipdates of a single
numeric state variable. Two effects— f andxz «— [’ are
commutative iff (s[z = f/(s)]) = f'(s[x = f(s)]), where
f(s) is the value off evaluated in state ands[x = y] de-
notes a state with all state variables having the same value
as in states, except forz which has valugy, i.e. numeric
effects are commutative if they are insensitive to ordering.
Under these assumptions, the following function can be de-
fined:

7(s,8", T)=s
7(s,8',b)=s'lb="T]
T(s,8",—b)=s"[b= 1]
7(s, s’ 33<—f)=8 [z = f(s)]
)=

T(s,8,r 1 f

T(s,8",e1 Nea)=7(s,7(s,5",e1),e2)

We can use to describe the set of state transitions defined
by the effectc > e:

T(c>e)={(s,s')|s Ecands’ = 7(s,s,e)}.

Given this definition ofl’(c > e), we can compute a tran-
sition matrix7;; for eachc;; > e;;. The element at rovy
and columns’ of T}, is 1 if (s,s") € T(c;; > e;5), and0
otherwise. Since we have ensured that the conditgrare
mutually exclusive, we geP, = Y7, p;T; as the transi-
tion probability matrix for actior:, whereT; = Z]: Ti;.
Finally, we need to make all states that satisfy the goal con-
dition ¢ of the problem absorbing. This is accomplished by
modifying P,: for eachs such thats = ¢, we set the entry
at row s and columns to 1 and the remaining entries on the
same row td.

e =le

e (prer] ... |pren) =pi(e Ner)| ... |pn(e Ney)
ct> (pre1] ... |pnen) =p1(c>eq)|. .. |pnlc> en)
pr(pierl. . [pker)peeal . . Ipnen =(p1p))el - . . [(p10k)e p2esl - - - [Pnen

e=Tr>e

c>e=(c>e)A(-e>T)
c>(d>e)=(ecnd)>e
(c1>er) A(ca>er) =((c1 Aea) > (e1 Aea)) A((cr A—cg) B> eq)
A((me1 Aeg) > ea) A((—er A—e) > T)

Figure 3: Effect equivalences.

The reward associated with a conjunction of simple ef-
fects can be defined as follows:

r(s, T)=0
(s, b)=0
r(s,—b)=0
r(s,x «— f)=0
r(s,r 1 f)=f(s)

r(s,e1 Aea)=r(s,e1) + e(s, ez)

The effectc;; > e;; associates rewart(s, e;;) with each
transition(s, s’) € T(c;; > e;;). We define a transition re-
ward matrix R;; for ¢;; > e;;. The element at row and
columns’ of R;; is r(s,e;;) for s’ = 7(s,s,e;;) andO if
(s,s") ¢ T;;. We then sum over all;; > ¢;; to get a transi-
tion reward matrix for;: R; = Z?;l R;j.

The same transition may occur in multiple outcomes of
the effectpieq]. .. |pnen, and we require the reward for a
specific transition to be consistent across outcomes.eLet

represent the fact that the reward is undefined for a transi-

tion. We defineR; to be R; with an element at row and
columns’ set toe if the element at rovs and columns’ of
T; is zero (i.e.e; does not define a transition frosto s).
We define an element-wise matrix operatoas follows:

e O xr=x

T O e=x

T O r=x

xOy=errorif x £y
We can now define the transition reward matrix for action
R, = Re¢ + O}, R;i. R¢ represents the one-time reward
associated with goal states. The entry at koand column

s’ of Rg is settorg if s = ¢ ands’ = ¢, and0 otherwise.
The transition reward matrix is well-defined if and only if

the transition rewards are consistent across all outcomes of

an action.

References

Dean, T., and Kanazawa, K. 1989. A model for reason-
ing about persistence and causati@omputational Intel-

ligence5(3):142-150.

Dearden, R., and Boutilier, C. 1997. Abstraction and
approximate decision-theoretic planningrtificial Intel-
ligence89(1-2):219-283.

Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domaidsurnal

of Artificial Intelligence Research0:61-124.

Ghallab, M.; Howe, A. E.; Knoblock, C. A.; McDermott,
D.; Ram, A.; Veloso, M. M.; Weld, D. S.; and Wilkins,
D. 1998. PDDL—the planning domain definition lan-
guage. Technical Report CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control, New
Haven, CT.

Howard, R. A. 1960Dynamic Programming and Markov
ProcessesNew York, NY: John Wiley & Sons.

Kushmerick, N.; Hanks, S.; and Weld, D. S. 1995. An
algorithm for probabilistic planningArtificial Intelligence
76(1-2):239-286.

Littman, M. L. 1997. Probabilistic propositional plan-
ning: Representations and complexity.Hroc. Fourteenth
National Conference on Artificial Intelligenc&48-754.
Providence, RI: American Association for Atrtificial Intel-
ligence.

McDermott, D. 2000. The 1998 Al planning systems com-
petition. Al Magazine21(2):35-55.

Rintanen, J. 2003. Expressive equivalence of formalism
for planning with sensing. In Giunchiglia, E.; Muscettola,
N.; and Nau, D. S., edsRroc. Thirteenth International
Conference on Automated Planning and Scheduligg—
194. Trento, Italy: AAAI Press.

