
Learning Reactive Policies for Probabilistic Planning Domains

SungWook Yoon and Alan Fern and Robert Givan
Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907 USA

{sy, afern, givan}@purdue.edu

Abstract

We present a planning system for selecting policies in prob-
abilistic planning domains. Our system is based on a vari-
ant of approximate policy iteration that combines inductive
machine learning and simulation to perform policy improve-
ment. Given a planning domain, the system iteratively im-
proves the best policy found so far until no more improvement
is observed or a time limit is exceeded. Though this process
can be computationally intensive, the result is a reactive pol-
icy, which can then be used to quickly solve future problem
instances from the planning domain. In this way, the resulting
policy can be viewed as a domain-specific reactive planner for
the planning domain, though it is discovered with a domain-
independent technique. Thus, the initial cost of finding the
policy is amortized over future problem-solving experience
in the domain. Due to the system’s inductive nature, there are
no performance guarantees for the selected policies. How-
ever, empirically our system has shown state-of-the-art per-
formance in a number of benchmark planning domains, both
deterministic and stochastic.

Introduction
We view a planning domain (e.g. as specified via PPDDL)
as a Markov Decision Process (MDP) where there is an
MDP state for each possible problem instance in the do-
main. Viewed as such, a solution to the MDP, i.e. a policy,
is a mapping from problem instances to domain actions. For
goal-based domains, such a policy can be viewed as speci-
fying what action to take given the current domain state and
current goal. A good policy will select actions so as to min-
imize the expected cost of reaching the goal.

Typically the MDP corresponding to a PPDDL domain
has far too many states to support solution via flat state-
space MDP techniques. To deal with large state spaces
we base our system on a form of approximate policy itera-
tion (API), which does not rely on state-space enumeration.
Most existing frameworks for API (e.g. (Bertsekas & Tsit-
siklis 1996)) represent policies indirectly via value functions
and use machine learning to select value function approxi-
mations. However, in many domains, particularly those with
relational (first-order) structure, representing and learning

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

value functions is much more complicated than represent-
ing and learning policies directly. Based on this observation,
our system utilizes a new variant of API (Fern, Yoon, & Gi-
van 2003), which represents policies directly as state/action
mappings.

The performance of our system depends on two critical
issues. First, we must provide a policy language and asso-
ciated learner that allow the system to find approximations
of good policies. Second, for complex domains, it is neces-
sary to provide a mechanism to bootstrap the API process.
Below we describe the choices we have made to deal with
these issues in our current system.

In what follows we first provide an overview of API. Next
we discuss the policy representation language and learning
technique used in our system. Finally, we give an overview
of our bootstrapping technique. A more detailed treatment
of our algorithms can be found in (Fern, Yoon, & Givan
2003; 2004).

Approximate Policy Iteration
Figure 1 shows the core components of our system’s API en-
gine. Each iteration of API consists of two primary stages:
policy evaluation and policy selection. Intuitively, policy
evaluation uses simulation to produce a training set that de-
scribes an improved policy with respect to the current pol-
icy. Policy selection then uses machine learning to find an
approximation of the improved policy based on the training
set. Thus, if we are given a current policy and then apply
these steps in sequence, the result is an (approximately) im-
proved policy. Our system iterates these steps until no more
improvement is observed.

Policy Evaluation. Policy evaluation is carried out via
the simulation technique of policy rollout (Bertsekas & Tsit-
siklis 1996). The policy-rollout component first draws a set
of problem instances (which can also be viewed as MDP
states) from the provided problem generator.1 Next, for each
problem instance I and each action a available in I , simula-
tion is used to estimate the Q-value Q(I, a, π) of the current

1Even when a problem generator is not provided for a planning
domain, we can still use API to solve individual problem instances.
Given an individual problem instance to be solved, we simply cre-
ate a trivial problem generator that always returns that problem in-
stance.



Problem
Generator

Policy
Rollout

Problem
Instances

Training
Data

Current Best Policy

Classifier
Learning

Figure 1: Block diagram of approximation policy iteration. We assume each planning domain provides a problem generator and our goal
is to produce a policy that performs well on problem instances drawn from the generator. Given the current best policy, the policy-rollout
component creates a training set that describes an improved policy as evaluated on problems drawn from the generator. The classifier learner
than analyzes this training set and outputs an approximately improved policy.

policy π, which is simply the expected value of taking ac-
tion a in I and then following π until a terminating state is
reached or a horizon limit is exceeded.

It is straightforward to compute a new improved pol-
icy π′ from the Q-values of policy π. In particular, it
is a basic property of MDPs that π′ defined as π′(I) =
argmax

a
Q(I, a, π) is guaranteed to improve upon π, if im-

provement is possible. Thus, for each of our sample prob-
lem instances, the estimates of Q(I, a, π) can be used to
calculate π′(I), that is an “improved action” for problem
instance I . Intuitively, the pairs 〈I, π′(I)〉 can be viewed
as training examples for learning an approximation of π′.
To support such learning, the output of the policy-rollout
component is a training set, with one training instance
〈I, Q(I, a1, π), . . . , Q(I, an, π)〉 for each instance I drawn
from the problem generator. Please refer to (Fern, Yoon, &
Givan 2003) for more details.

Policy Selection. Policy selection is carried out by the
classifier-learning component of our system. Note that a pol-
icy can be viewed as a classifier that maps problem instances
(i.e. states) to actions. The training set obtained from policy
rollout is used to learn an (approximately) improved policy.
Given a language for compactly representing policies, the
job of the classifier learner is to select a policy within that
language that chooses actions with high Q-value for prob-
lem instances in the training set. With a proper language
bias, such policies also tend to select good actions in prob-
lem instances outside of the training set. In the next section
we give an overview of the policy description language and
the corresponding learner used in our system.

Compute Time. In our current system, the compuatation
time of API is mostly consumed by generating training sets
via policy rollout. This is particularly the case for domains
where problem instances contain many ground actions, as
multiple trajectories must be simulated for each ground ac-
tion in each problem instance encountered. Presently the
rollout component is implemented in Scheme, hence one
way to significantly improve runtime is to provide a C imple-
mentation. We are also working to exploit the independence
of the rollout trajectories with a parallel implementation. If
completed, this speedup may be in effect for our competition
entry.

Representing and Learning Policies
For API to succeed, we must provide an adequate language
for representing good policies in a domain, and an associated
learner that can find good policies, in that language, based
on the guidance provided by the rollout training sets.

One of our primary interests is in applying our system to
relationally structured planning domains, such as the blocks
world, where problem instances are described by specify-
ing a domain of objects (e.g. a set of blocks) and relations
among the objects. Thus, it is critical that we provide a pol-
icy language that leverages the relational structure in order
to generalize across problem instances with different sets of
objects. For example, our language needs to represent poli-
cies that can be applied to any problem instance of the blocks
worlds, regardless of the number and identity of blocks. In
order to represent such “generalized policies” we draw upon
ideas from the knowledge-representation community, using
a language based on taxonomic syntax.

Policy Representation. Our policy representation is an
ordered list of rules. The head of each rule is a variablized
action type such as pickup(?a). The body of each rule spec-
ifies a conjunction of constraints on the “object variables”
in the head, which indicate when an action should be ap-
plied. Given a problem instance, we say that a rule suggests
an action if: 1) the action is the result of replacing the object
variables in the head with objects from the problem instance,
and 2) those objects satisfy the appropriate constraints in the
body. The action selected by an ordered list of rules (i.e. a
policy) is equal to the action chosen by the earliest rule that
selects an action.

The object constraints in a rule’s body are represented via
taxonomic syntax expressions, which are constructed from
the predicate symbols of the planning domain and object
variables in the rule’s head. As an example policy, consider
a blocks-world domain where the goal is always to clear off
block A. We can represent an optimal policy in our taxo-
nomic representation as follows.

pickup(?a) : (?a ∈ on∗ A) ∧ (?a ∈ clear)

putdown(?a) : ?a ∈ holding

The first rule indicates that we should “pick up a clear block
which is above block A”. The second rule says that we
should “put down any block that is being held”.

For a detailed description of the syntax and semantics of



our policy language please refer to the appendix of (Fern,
Yoon, & Givan 2004).

Learning. Recall that each training instance is of the form
〈I, Q(I, a1, π), . . . , Q(I, an, π)〉, where I is a problem in-
stance and the Q(I, ai, π) are the associated Q-values. The
goal of the learner is to select a list of rules such that the
actions chosen by the corresponding policy results in high
Q-value over the training data. Ideally the learned policy
should always select an action corresponding to the largest
Q-value.

We use a simple greedy covering strategy for learning lists
of taxonomic rules. We add one rule to the list at a time
until the resulting policy covers all of the training data (i.e.
the policy selects an action for every problem instance in the
training data). Each rule is learned by greedily adding object
constraints to the body according to a heuristic measure that
attempts to balance the coverage and quality of a rule. For
more information on the learner, please refer to (Yoon, Fern,
& Givan 2002) and (Fern, Yoon, & Givan 2003).

Bootstrapping from Random Walks
API must be initialized with a base policy from which it-
erative policy improvement begins. Since our objective is
to have a domain-independent system, we use the random
policy as the default base policy in our system. However,
for many planning domains it is unlikely that a random pol-
icy will achieve any non-trivial reward in problem instances
drawn from the provided problem generator. For example,
in a blocks world with even a relatively small number of
blocks, it is unlikely that a random policy will achieve the
goal configuration. As a result, in such domains, API will
tend to fail when initialized with a random base policy. The
primary reason for the failure is that the Q-values for each
action under the random policy will tend to be equal. Thus,
the rollout training set, which is based on the Q-values, will
not provide the learner with useful guidance as to what ac-
tions are desirable.

Our current approach to this problem is to utilize a
new bootstrapping technique (Fern, Yoon, & Givan 2004).
Rather than initially drive API with the original problem
generator (which generates difficult problems), we instead
automatically construct an new problem generator that gen-
erates easier problems. We then increase the problem diffi-
culty in accordance with the quality of the current best policy
found by API. Below we describe this process for goal-based
domains. Our current system does not provide a bootstrap-
ping mechanism for non-goal-based domains.

We generate problem instances of varying difficulty by
performing random walks in the planning domain. To con-
struct a single problem instance from a planning domain, we
first draw a problem instance from the original problem gen-
erator. In a goal-based setting, such a problem instances will
specify an (initial) domain state s and a goal. Next, starting
at s, we take a sequence of n random actions (i.e. an n-step
random walk) and observe the resulting state g. We con-
struct a new problem instance with initial state s and goal g.
When n is small, such problem instances are relatively easy
to solve and we can learn a policy to solve all such problem
instances using API starting with a random base policy.

Once we learn a policy for “random-walk problems” with
small n, we increase the value of n until the current pol-
icy performs poorly and then continue to apply API using
the more difficult problem distribution. This process of iter-
atively increasing n and then applying API continues until
we either achieve a policy that performs well on the orig-
inal problem distribution or no more improvement is ob-
served. For more details and empirical results please see
(Fern, Yoon, & Givan 2004).

Acknowledgments
This work was supported in part by NSF grants 9977981-IIS
and 0093100-IIS.

References
Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic
Programming. Athena Scientific.
Fern, A.; Yoon, S.; and Givan, R. 2003. Approximate
policy iteration with a policy language bias. In NIPS.
Fern, A.; Yoon, S.; and Givan, R. 2004. Learning domain-
specific control knowledge from random walks. In ICAPS.
Yoon, S.; Fern, A.; and Givan, R. 2002. Inductive policy
selection for first-order MDPs. In UAI.


