
Probapop: Probabilistic Partial-Order Planning

Nilufer Onder Garrett C. Whelan Li Li
Department of Computer Science
Michigan Technological University

1400 Townsend Drive
Houghton, MI 49931

{nilufer,gcwhelan,lili}@mtu.edu

Abstract

We describe Probapop, a partial-order probabilistic
planning system. Probapop is a blind (conformant)
planner that finds plans for domains involving prob-
abilistic actions but no observability. The Probapop
implementation is based on Vhpop, a partial-order de-
terministic planner written in C++. The Probapop
algorithm uses plan graph based heuristics for select-
ing a plan from the search queue, and probabilistic
assessment heuristics for selecting a condition whose
probability can be increased.

Introduction
Probapop1 is a conformant probabilistic planner (term
used in (Hyafil & Bacchus 2003)). In this paradigm,
the actions and the initial state can be probabilistic,
i.e., they can have several possible outcomes anno-
tated by a probability of occurrence. In addition,
the planning problem is conformant i.e., the agent
cannot observe the environment. The objective is
to find a minimal sequence of steps that will take
an agent from an initial set of states to a speci-
fied goal state within a specified threshold probabil-
ity. Note that while the assumption of blind agents
is not true in general, it is useful to incorporate con-
formant planning methods because sensing might be
expensive, not reliable, or not available. We leave con-
tingency planning, e.g., (Majercik & Littman 1999;
Onder & Pollack 1999; Hansen & Feng 2000; Karls-
son 2001) and other paradigms that assume non-
probabilistic effects, e.g.,(Ferraris & Giunchiglia 2000;
Bertoli, Cimatti, & Roveri 2001) outside the current
implementation of Probapop.

Our work is motivated by the incentive to have
partial-order planning as a viable option for confor-
mant probabilistic planning. The primary reason is
that partial-order planners have worked very well with
lifted actions which are useful in coding large domains

1This work has been supported by a Research Excellence
Fund grant from Michigan Technological University.

in a compact way. Second, due to its least commit-
ment strategy in step ordering, partial-order planning
(POP) produces plans that are highly parallelizable.
Third, planners that can handle rich temporal con-
straints have been based on POP algorithms (Smith,
Frank, & Jonsson 2000).

Our basic approach is to form base plans by using de-
terministic partial-order planning techniques, and then
to estimate the best way to improve these plans. Re-
cently Repop (Nguyen & Kambhampati 2001) and Vh-
pop (Younes & Simmons 2002) planners have demon-
strated that the very heuristics that speed up non-
partial-order planners can be used to scale up partial-
order planning. We show that these distance based
heuristics (McDermott 1999; Bonet & Geffner 1999) as
implemented using “relaxed” plan graphs can be em-
ployed in probabilistic domains. These, coupled with
selective plan improvement heuristics result in signif-
icant improvement. As a result, Probapop enjoys the
soundness, completeness, and least-commitment prop-
erties of partial-order planning and makes partial-order
planning feasible in probabilistic domains.

Probapop and Partial-Order Planning

For partial-order probabilistic planning, we imple-
mented the Buridan (Kushmerick, Hanks, & Weld
1995) probabilistic planning algorithm on top of Vhpop
(Younes & Simmons 2002), a recent partial-order plan-
ner. A partially ordered plan π is a is 6-tuple, <STEPS,

ORD, BIND, LINKS, OPEN, UNSAFE>, representing sets
of ground actions, ordering constraints, binding con-
straints, causal links, open conditions, and unsafe
links, respectively. An ordering constraint Si ≺ Sj

represents the fact that step Si precedes Sj . A causal
link is a triple < Si, p, Sj >, where Si is the pro-
ducer, Sj is the consumer and p represents the condi-
tion supported. An open condition is a pair < p, S >,
where, p is a condition needed by step S. A causal link
< Si, p, Sj > is unsafe if the plan contains a threaten-
ing step Sk such that Sk has p among its effects, and

Sk may intervene between Si and Sj . Open conditions
and unsafe links are collectively referred to as flaws. A
planning problem is a triple (I,G, t), where, the initial
state I is a probability distribution over states, G is a
set of literals that must be true at the end of execution,
and t is a probability threshold. The planner must find
a plan that takes the agent from I to G with a prob-
ability ≥ t. If several plans have the same probability
of success, then the one with the least number of steps
is preferred.

The Probapop algorithm shown in Fig. 1 first con-
structs an initial plan by forming I and G into ini-
tial and goal steps, and then refines the plans in the
search queue until it finds a solution plan that meets
or exceeds the probability threshold. Plan refinement
operations involve repairing flaws. An open condition
can be closed by adding a new step from the domain
theory, or reusing a step already in the plan. An un-
safe link is handled by the promotion, demotion, or
separation (lifted actions are used) operations, or by
confrontation(Penberthy & Weld 1992) which involves
commitment to non-threatening effects.

function Probapop (initial, goal, t)
returns a solution plan, or failure
** plans ← Make-Minimal-Plan(initial, goal)
** loop do
**** if plans is empty then return failure
**** plan ← Remove-Front(plans)
**** if Solution?(plan, t) then return plan
**** plans ← Merge(plans, Refine-Plan(plan))
** end

function REFINE-PLAN (plan)
returns a set of plans (possibly null)
** if Flaws(plan) is empty then
**** plan ← Reopen-Conditions(plan)
** flaw ← Select-Flaw(plan)
** if flaw is an open condition then choose:
****** return Reuse-Step(plan, flaw)
****** return Add-New-Step(plan, flaw)
** if flaw is a threat then choose:
****** return Demotion(plan, flaw)
****** return Promotion(plan, flaw)
****** return Separation(plan, flaw)
****** return Confrontation(plan, flaw)

Figure 1: The probabilistic POP algorithm.

The search is conducted using an A* algorithm
guided by a ranking function f . As usual for a plan
π, f(π) = g(π) + h(π), where g(π) is the cost of the
plan, and h(π) is the estimated cost of completing it.
In Probapop, g reflects the number of steps in a plan, h
represents the estimated number of steps to complete
a plan. Both are weighted by the probability of success
of the overall plan. The ranking function is used at the

Merge step to order the plans in the search queue such
that the plan that ranks best is at the beginning of the
queue. We term a plan for which OPEN = UNSAFE = ∅
as a quasi-complete plan. A quasi-complete plan is not
a solution if it does not meet the probability thresh-
old. Probapop can be viewed as first choosing a plan
to improve using the ranking function, then choosing
a way to improve the plan, and finally choosing a way
to implement the improvement. These phases do not
have to follow strictly or work on the same plan. Af-
ter the successors of a plan are generated, the ranking
function might gear the search toward other plans in
the search queue. In the next section, we describe the
heuristics used.

Distance Based Ranking and Selective
Reopening in Probapop

The Vhpop deterministic partial order-planner de-
scribed in (Younes & Simmons 2002) implements the
ADD heuristic to provide an estimate of the total num-
ber of new actions needed to close all the open condi-
tions. Before starting to search, the planner builds a
planning graph (Blum & Furst 1997) which has the
literals in the initial state in its first level, and con-
tinues to expand it until it reaches a level where all
the goal literals are present. Vhpop’s ADD heuris-
tic achieves good performance by computing the step
cost of the open conditions from the planning graph,
i.e., h(π) = hadd(OPEN(π)). The cost of achieving
a literal q is the level of the first action that achieves
q: hadd(q) = mina∈GA(q)hadd(a) if GA(q) 6= ∅, where
GA(q) is an action that has an effect q. Note that
hadd(q) is 0 if q holds initially, and is∞ if q never holds.
The level of an action is the first level its preconditions
become true: hadd(a) = 1 + hadd(PREC(a)).

a

prec: P, Qprec: P, Q

c

bQ ~Q

0.7 0.3
c

a b

P ~P

prec: P, ~Q

A1

A1−1 A1−2

A1−3

Figure 2: Probabilistic action A1 is split into deter-
ministic actions A1-1, A1-2, and A1-3.

In order to be able to use ADD with probabilistic ef-
fects, one would need to split into as many plan graphs
as there are leaves in a probabilistic action. To avoid
this, we split each action in the domain theory into as
many deterministic actions as the number of nonempty
effect lists each representing a possible way the original

action would work (Fig. 2). By using the split actions,
we can compute a good estimate of the number of ac-
tions needed to complete a plan. While the plan graph
uses split actions, the plans in the search queue always
contain the full original action so that the planner can
correctly assess the probability of success. Our current
ranking function uses this assessment to prefer plans
with higher probability of success, and if there is a tie,
the plan with less number of steps is preferred.

An important distinction between deterministic
partial-order planning and probabilistic partial-order
planning is multiple support for plan literals. In the
deterministic case, an open condition is permanently
removed from the list of flaws once it is resolved. In
the probabilistic case, it can be reopened so that the
planner can search for additional steps that increase
the probability of the literal. We address this problem
by employing selective reopening (SR) where we select
a random total ordering of the plan; look at the state
distribution after the execution of each step; and re-
open only those conditions that are not guaranteed to
be achieved. While plan assessment is costly for prob-
abilistic plans, this is a one time cost incurred only on
quasi-complete plans and we have observed that the
benefit of avoiding extra plans in the search space far
exceeds the computational overhead incurred.

It is important to note that neither the split actions
nor the selective reopening technique change the base
soundness and completeness properties of the Buridan
algorithm. The split actions are only used in the re-
laxed plan graph, and the reopening technique does
not block any alternatives from being sought as they
would already be covered by a plan in the search queue.

Conclusion and Future Work

We presented Probapop, a partial-order probabilistic
planner. We described distance-based and probabilis-
tic condition based heuristics for partial-order prob-
abilistic planning. We informally noted that neither
the split actions nor the selective reopening technique
change the base soundness and completeness proper-
ties of the Buridan algorithm.

Probapop is different than policy generating plan-
ners such as Spudd(Hoey et al. 1999) and Gpt(Bonet
& Geffner 2000) in the sense that it generates plans.
Given a planning problem, Probapop returns a se-
quence of steps that achieve the goal with a probability
that meets or exceeds the specified threshold. The plan
generated does not rely on sensing actions in order to
be executed. Our future work involves adding the ca-
pability to deal with partially observable domains to
Probapop.

References
Bertoli, P.; Cimatti, A.; and Roveri, M. 2001. Heuristic
search + symbolic model checking = efficient conformant
planning. In Proc. 18th Intl. Joint Conf. on Artificial
Intelligence, 467–472.

Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. AIJ 90:281–300.

Bonet, B., and Geffner, H. 1999. Planning as heuris-
tic search: New results. In Proc. 5th European Conf. on
Planning (ECP’99).

Bonet, B., and Geffner, H. 2000. Planning with incom-
plete information as heuristic search in belief space. In
Proc. 5th Intl. Conf. AI Planning & Scheduling, 52–61.

Ferraris, P., and Giunchiglia, E. 2000. Planning as satis-
fiability in nondeterministic domains. In Proc. 17th Nat.
Conf. Artificial Intelligence, 748–754.

Hansen, E. A., and Feng, Z. 2000. Dynamic programming
for POMDPs using a factored state representation. In
Proc. 5th Intl. Conf. AI Planning & Scheduling, 130–139.

Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
Proc. 15th Conf. Uncertainty in AI.

Hyafil, N., and Bacchus, F. 2003. Conformant probabilis-
tic planning via csps. In Proc. 13th Intl. Conf. Automated
Planning & Scheduling.

Karlsson, L. 2001. Conditional progressive planning under
uncertainty. In Proc. 18th Intl. Joint Conf. on Artificial
Intelligence, 431–436.

Kushmerick, N.; Hanks, S.; and Weld, D. S. 1995. An
algorithm for probabilistic planning. AIJ 76:239–286.

Majercik, S. M., and Littman, M. L. 1999. Contingent
planning under uncertainty via stochastic satisfiability. In
Proc. 16th Nat. Conf. Artificial Intelligence, 549–556.

McDermott, D. 1999. Using regression-match graphs to
control search in planning. AIJ 109(1-2):111–159.

Nguyen, X., and Kambhampati, S. 2001. Reviving par-
tial order planning. In Proc. 18th Intl. Joint Conf. on
Artificial Intelligence, 459–464.

Onder, N., and Pollack, M. E. 1999. Conditional, prob-
abilistic planning: A unifying algorithm and effective
search control mechanisms. In Proc. 16th Nat. Conf. Ar-
tificial Intelligence, 577–584.

Penberthy, J. S., and Weld, D. S. 1992. UCPOP: A
sound, complete, partial order planner for ADL. In Proc.
Third Intl. Conf. Principles of Knowledge Representation
& Reasoning, 103–114.

Smith, D. E.; Frank, J.; and Jonsson, A. K. 2000. Bridg-
ing the gap between planning and scheduling. Knowledge
Engineering Review 15(1).

Younes, H. L., and Simmons, R. G. 2002. On the role of
ground actions in refinement planning. In Proc. 6th Intl.
Conf. AI Planning & Scheduling, 54–61.

