
Symbolic Heuristic Search for Probabilistic Planning

Zhengzhu Feng
Department of Computer Science

University of Massachusetts
Amherst, MA 01003
fengzz@cs.umass.edu

Eric A. Hansen
Department of Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

hansen@cse.msstate.edu

Abstract

We describe a planner that participates in the Probabilis-
tic Planning Track of the 2004 International Planning Com-
petition. Our planner integrates two approaches to solving
Markov decision processes with large state spaces. State ab-
straction is used to avoid evaluating states individually. For-
ward search from a start state, guided by an admissible heuris-
tic, is used to avoid evaluating all states.

Introduction
The 2004 International Planning Competition introduces,
for the first time, a probabilistic planning track. The under-
lining model of the planning problem is essentially a Markov
decision process (MDP), and is encoded using an extension
of the PDDL language, called the Probabilistic PDDL. Clas-
sic dynamic programming algorithms solve MDPs in time
polynomial in the size of the state space. However, the
size of the state space grows exponentially with the number
of features describing the problem. This “state explosion”
problem limits use of the MDP framework, and overcoming
it has become an important topic of research.

Over the past several years, approaches to solving MDPs
that do not rely on complete state enumeration have been
developed. One approach exploits a feature-based (or fac-
tored) representation of an MDP to create state abstractions
that allow the problem to be represented and solved more
efficiently (Dearden & Boutilier 1997; Hoey et al. 1999;
and many others). Another approach limits computation
to states that are reachable from the starting state(s) of the
MDP (Barto, Bradtke, & Singh 1995; Deanet al. 1995;
Hansen & Zilberstein 2001). Our planner integrates these
approaches in a unifying framework using symbolic model-
checking techniques, based on the symbolic LAO* and sym-
bolic RTDP algorithms we previously developed (Feng &
Hansen 2002; Feng, Hansen, & Zilberstein 2003). In this
paper we present a brief summary of these algorithms.

Factored MDPs and decision diagrams
A Markov decision process (MDP) is defined as a tuple
(S, A, P, R) where: S is a set of states;A is a set of ac-
tions;P is a set of transition modelsP a : S × S → [0, 1],
one for each action, specifying the transition probabilities of
the process; andR is a set of reward modelsRa : S → <,

one for each action, specifying the expected reward for tak-
ing actiona in each state. We consider MDPs for which the
objective is to find a policyπ : S → A that maximizes to-
tal discounted reward over an infinite (or indefinite) horizon,
whereγ ∈ [0, 1] is the discount factor. (We allow a discount
factor of 1 for indefinite-horizon problems only, that is, for
MDPs that terminate after a goal state is reached.)

In a factored MDP, the set of states is described by a set of
random variablesX = {X1, . . . , Xn}. Without loss of gen-
erality, we assume these are Boolean variables. A particular
instantiation of the variables corresponds to a unique state.
Because the set of statesS = 2X grows exponentially with
the number of variables, it is impractical to represent the
transition and reward models explicitly as matrices when the
number of states variables is large. Instead we follow Hoey
et al.(1999) in using algebraic decision diagrams to achieve
a more compact representation.

Algebraic decision diagrams (ADDs) are a generalization
of binary decision diagrams (BDDs), a compact data struc-
ture for Boolean functions used in symbolic model checking.
A decision diagram is a data structure (corresponding to an
acyclic directed graph) that compactly represents a mapping
from a set of Boolean state variables to a set of values. A
BDD represents a mapping to the values 0 or 1. An ADD
represents a mapping to any finite set of values. To repre-
sent these mappings compactly, decision diagrams exploit
the fact that many instantiations of the state variables map
to the same value. In other words, decision diagrams ex-
ploit state abstraction. BDDs are typically used to represent
the characteristic functions of sets of states and the tran-
sition functions of finite-state automata. ADDs can repre-
sent weighted finite-state automata, where the weights cor-
respond to transition probabilities or rewards, and thus are
an ideal representation for MDPs.

Hoeyet al. (1999) describe how to represent the transi-
tion and reward models of a factored MDP compactly using
ADDs. We adopt their notation and refer to their paper for
details of this representation. LetX = {X1, . . . , Xn} rep-
resent the state variables at the current time and letX′ =
{X ′

1, . . . , X
′
n} represent the state variables at the next step.

For each action, an ADDP a(X,X′) represents the transi-
tion probabilities for the action. Similarly, the reward model
Ra(X) for each actiona is represented by an ADD. The ad-
vantage of using ADDs to represent mappings from states



(and state transitions) to values is that the complexity of op-
erators on ADDs depends on the number of nodes in the
diagrams, not the size of the state space. If there is sufficient
regularity in the model, ADDs can be very compact, allow-
ing problems with large state spaces to be represented and
solved efficiently.

Symbolic LAO* algorithm
LAO* (Hansen & Zilberstein 2001) is an extension of the
classic search algorithm AO* that can find solutions with
loops. This makes it possible for LAO* to solve MDPs,
since a policy for an infinite-horizon MDP allows both con-
ditional and cyclic behavior. Like AO*, LAO* has two al-
ternating phases. First, it expands the best partial solution
(or policy) and evaluates the states on its fringe using an ad-
missible heuristic function. Then it performs dynamic pro-
gramming on the states visited by the best partial solution,
to update their values and possibly revise the currently best
partial solution. The two phases alternate until a complete
solution is found, which is guaranteed to be optimal.

AO* and LAO* differ in the algorithms they use in the dy-
namic programming step. Because AO* assumes an acyclic
solution, it can perform dynamic programming in a single
backward pass from the states on the fringe of the solution
to the start state. Because LAO* allows solutions with cy-
cles, it relies on an iterative dynamic programming algo-
rithm (such as value iteration or policy iteration). In orga-
nization, the LAO* algorithm is similar to the “envelope”
dynamic programming approach to solving MDPs (Deanet
al. 1995). It is also closely related to RTDP (Barto, Bradtke,
& Singh 1995), which is an on-line (or “real time”) search
algorithm for MDPs, in contrast to LAO*, which is an off-
line search algorithm.

We call our generalization of LAO* a symbolic search al-
gorithm because it manipulates sets of states, instead of indi-
vidual states. In keeping with the symbolic model-checking
approach, we represent a set of statesS by its characteristic
functionχS , so thats ∈ S ⇐⇒ χS(s) = 1. We repre-
sent the characteristic function of a set of states by an ADD.
(Because its values are 0 or 1, we can also represent a char-
acteristic function by a BDD.) From now on, whenever we
refer to a set of states,S, we implicitly refer to its character-
istic function, as represented by a decision diagram.

In addition to representing sets of states as ADDs, we rep-
resent every element manipulated by the LAO* algorithm as
an ADD, including: the transition and reward models; the
policy π : S → A; the state evaluation functionV : S → <
that is computed in the course of finding a policy; and an ad-
missible heuristic evaluation functionh : S → < that guides
the search for the best policy. Even the discount factorγ is
represented by a simple ADD that maps every input to a
constant value. This allows us to perform all computations
of the LAO* algorithm using ADDs.

Besides exploiting state abstraction, we want to limit
computation to the set of states that are reachable from the
start state by following the best policy. Although an ADD
effectively assigns a value to every state, these values are
only relevant for the set of reachable states. To focus com-
putation on the relevant states, we introduce the notion of

maskingan ADD. Given an ADDD and a set of relevant
statesU , masking is performed by multiplyingD by χU .
This has the effect of mapping all irrelevant states to the
value zero. We letDU denote the resultingmasked ADD.
(Note that we need to haveU in order to correctly interpret
DU ). Mapping all irrelevant states to zero can simplify the
ADD considerably. If the set of reachable states is small, the
masked ADD often has dramatically fewer nodes. This in
turn can dramatically improve the efficiency of computation
using ADDs.

Symbolic LAO* does not maintain an explicit search
graph. It is sufficient to keep track of the set of states that
have been “expanded” so far, denotedG, thepartial value
function, denotedVG, and apartial policy, denotedπG. For
any state inG, we can “query” the policy to determine its
associated action, and compute its successor states. Thus,
the graph structure is implicit in this representation. Note
that throughout the whole LAO* algorithm, we only main-
tain one value functionV and one policyπ. VG andπG are
implicitly defined byG and the masking operation.

Symbolic RTDP
Recall that RTDP performs a DP update while interacting
with the environment. At each time stept, the agent ob-
serves the current statest and performs a DP backup to up-
date its value, as follows:

V t+1(st)← max
a∈A

{
Ra(st) + γ

∑
s′∈S

P a(st, s
′)V t(s′)

}
.

(1)
The values of all other states are kept unchanged, that is, for
all s 6= st:

V t+1(s) = V t(s).
If the initial value function is an admissible estimate of the
optimal value function, then an agent can always take the
action that maximizes Equation (1). Otherwise some explo-
ration scheme must be used in choosing actions, in order to
ensure convergence. After an action is taken, the agent ob-
serves the resulting state and the cycle repeats.

The advantage of RTDP over standard DP is that it uses an
on-line trajectory of states, beginning from the start state, to
determine what states to update and to avoid computations
on unlikely states. However, the enumerative nature of the
trajectory sampling is a bottleneck for further performance
improvement. When the state space is large enough, a state
by state update becomes hopelessly inefficient, especially if
the sampling involves carrying out physical actions. sRTDP
helps overcome this inefficiency by generalizing the update
from a single state to an abstract state, using symbolic model
checking techniques.

We extend the idea of masking in symbolic LAO* to
sRTDP by performing DP on the abstract stateE that the
current states belongs to. Symbolic model-checking pro-
vides us with convenient and efficient techniques to group
states as abstract states and to manipulate these abstract
states. There are many ways to group states into abstract
states. We present two heuristic approaches that are moti-
vated by the idea of generalization by structural similarity. A



value-basedabstract state consists of states whose value es-
timates are close to that of the current state. Areachability-
basedabstract state consists of states that share with the cur-
rent state a similar set of successor states. Unlike SPUDD,
weexplicitlyconstruct this abstract state at each time step of
sRTDP, using standard ADD model-checking operators.

Generalization by Value With a value-based abstract
state, the experience is generalized to states that have sim-
ilar value estimates as the current state. The intuition is
that states with similaroptimalvalues may also be similarly
desirable. Generalizing updates to states with similaresti-
matedvalues helps the agent in two ways. First, if some of
these states indeed have similar optimal value as the current
state, the update strengthens this similarity and the agent is
better informed in the future when these states are visited
again. Second, if some of the states have very different op-
timal value than the current state, the generalization helps to
distinguish them and avoid computations on them in the fu-
ture when the same state as the current state is visited again.

Generalization by Reachability With a reachability-
based abstract state, the experience is generalized to states
that are similar to the current state in terms of the set of one-
step reachable states. The intuition here is that if the agent
is going to visit some states, sayC, from the current states,
then any information aboutC is useful not only tos but also
to other states that can reachC. By generalizing the update
to these other states the agent is better informed in the future
whether to aim atC or to avoid it.

To compute the abstract state based on reachability, we
introduce two operators from the model-checking literature.
The Img(C) operator computes the set of one-step reach-
able states from states inC, and thePreImg(C) operator
computes the set of states that can reach some state inC in
one step. The reachability-based abstract stateE can then
be computed as:

E = PreImg(Img({s}))− PreImg(S − Img({s})).
Once the setE is computed, it is used to mask the current
value function before perform the DP update. After the up-
date, an action is chosen that maximizes the DP update at
states. The agent then carries out the action, and the pro-
cess repeats.

Although both symbolic LAO* and sRTDP use a
“masked” DP update, the masks they use are different and
serve different purposes. The mask in symbolic LAO* con-
tains all states visited so far by the forward search step.
The purpose of masking is to restrict computation to rele-
vant states. The mask in sRTDP contains states that share
structural similarity. The purpose of masking is to general-
ize update on a single state to an abstract state. This general-
ization has two consequences. It introduces some overhead
in the DP step, including identifying the abstract state, and
preforming masked DP instead of single-state DP. On the
other hand, it updates the value of a group of states in a sin-
gle step, at a cost that can be significantly less than updating
the states separately. For problems that are large enough yet
have special

Admissible heuristics
Both LAO* and (model-based) RTDP use an admissible
heuristic to guide the search. From the initial release of the
sample test problems from the planning competition, it is
possible to design domain specific heuristic functions. On
the other hand, if such a heuristic is not available, we can
always revert to a simple heuristic using approximate dy-
namic programming. Given an error bound on the approxi-
mation, the value function can be converted to an admissible
heuristic. (Another way to ensure admissibility is to perform
value iteration on an initial value function that is admissi-
ble, since each step of value iteration preserves admissibil-
ity.) Symbolic dynamic programming can be used to com-
pute an approximate value function efficiently. St. Aubin et
al. (2000) describe an approximate dynamic programming
algorithm for factored MDPs, called APRICODD, that is
based on SPUDD. It simplifies the value function ADD by
aggregating states with similar values. Another approach to
approximate dynamic programming for factored MDPs de-
scribed by Dearden and Boutilier (1997) can also be used to
compute admissible heuristics.

References
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
act using real-time dynamic programming.Artificial Intel-
ligence72:81–138.
Dean, T.; Kaelbling, L.; Kirman, J.; and Nicholson, A.
1995. Planning under time constraints in stochastic do-
mains.Artificial Intelligence76:35–74.
Dearden, R., and Boutilier, C. 1997. Abstraction and
approximate decision-theoretic planning.Artificial Intel-
ligence89:219–283.
Feng, Z., and Hansen, E. A. 2002. Symbolic heuristic
search for factored markov decision processes. InProceed-
ings of the Eighteenth National Conference on Artificial In-
telligence (AAAI-02).
Feng, Z.; Hansen, E. A.; and Zilberstein, S. 2003. Sym-
bolic generalization for on-line planning. InProceedings
of the 19th Conference on Uncertainty in Articial Intelli-
gence.
Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops.Artificial
Intelligence129:35–62.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
Proceedings of the 15th Conference on Uncertainty in Ar-
ticial Intelligence, 279–288.
St-Aubin, R.; Hoey, J.; and Boutilier, C. 2000. APRI-
CODD: Approximate policy construction using decision
diagrams. InProceedings of NIPS-2000.


