
IPC-4 Probabilistic Planning Track: FAQ 0.5
September 13, 2003

Michael L. Littman
Department of Computer Science

Rutgers University
Piscataway, NJ 08854 USA
mlittman@cs.rutgers.edu

Håkan L. S. Younes
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213 USA

lorens@cs.cmu.edu

Abstract

The 2004 International Planning Competition, IPC-4,
will include a probabilistic planning track for the first
time. This document provides some of the high level
decisions that have been made concerning how the com-
petition will be run.

The 2004 International Planning Competition, IPC-4, will
include a probabilistic planning track for the first time. This
document lays out some of the high level decisions that have
been made concerning how the competition will be run. The
details are still in flux at the time of this writing, and we
hope to get feedback from the participants to spelled them
out more precisely during the fall.

The overriding goal of the probabilistic planning track is
to bring together two communities converging on a similar
set of research issues and aid them in creating comparable
tools and approaches. One community consists of Markov
decision process (MDP) researchers interested in develop-
ing algorithms that apply to powerfully expressive represen-
tations of environments. The other consists of planning re-
searchers incorporating probabilistic and decision theoretic
concepts into their planning algorithms. Cross fertilization
has begun, but the probabilistic planning track promises a
set of shared benchmarks and evaluation metrics that could
crystallize efforts in this domain of study.

This document represents a snapshot of the
ongoing development of the IPC-4 probabilistic
track. For the latest developments, please visit:
http://www.cs.rutgers.edu/ ∼mlittman/topics/
ipc04-pt.html .

Frequently Asked Questions
There are many issues to be ironed out as part of establish-
ing the new track, but there are some issues that are mostly
decided at this point. Here are some clarifying questions and
their answers.

What domain description language will be used to rep-
resent probabilistic domains?

That’s a great first question. We are creating a new do-
main description language, sketched in the second section
of this document. It is modeled on PDDL 2.1, the domain
description language for deterministic domains that has been

used in the IPC in the past. Syntactically, this language has
a STRIPS-like flavor, but includes probabilistic constructs.

By basing the domain description language on PDDL, we
remain in the spirit of the existing programming competi-
tion, which we expect to help further bring the communities
together.

But, I like DBN representations. Is there some way for
me to participate?

Do not fear. The representation is sufficiently powerful
to support a direct translation from the kind of conditional
probability tables used in dynamic Bayesian network (DBN)
representations (Dean & Kanazawa 1989), even if they in-
clude context-specific independence (Boutilieret al. 1996).

For groups that have DBN-based planners and don’t feel
they will be able to make drastic modifications, it is worth
pointing out that there are techniques that make it possible
to generate a DBN representation from a (propositionalized)
STRIPS-like representation with only a polynomial increase
in representation and plan size (Littman 1997).

Was that a shameless plug?
No, we’re a little ashamed.

Since the domain description language is based on
PDDL, does this mean the representation is relational?

Yes, you’re very observant. Although representations
with explicit objects are not a traditional feature of MDP-
based domain description languages, algorithms that exploit
these features have begun to appear.

We expect that many groups will propositionalize the do-
mains because they cannot directly plan with parameterized
operators. Most of the test domains will allow for relatively
straightforward propositionalization, so the relational rep-
resentation should not be seen as an impediment to entry
for interested groups. We simply feel that relational MDPs
are an exciting direction worth supporting and want to give
researchers interested in relational issues an opportunity to
explore this type of representation.

I don’t know how to write a parser for such an ele-
gant, syntactically rich language. What resources will
be available for me?

Thank you, it is a nice language, isn’t it? We intend to
provide software in C++ for a plan validator and very sim-
ple planner (essentially a parser). We are also considering

6

writing some conversion tools from our domain description
language to a simple propositional format. This could be
used to prepare domains for input to various existing plan-
ning algorithms.

Wait a second. Doesn’t PDDL 2.1 support numbers?
How can we propositionalize when there are numbers?

Numbers will only be used in a very limited way to ex-
press rewards; further details are given in the next section.
None of the domains for the probabilistic track will have nu-
meric variables as part of the state space, so the domains we
use will propositionalize.

Will problems have a single initial state, or a probability
distribution over possible initial states?

We don’t think this matters conceptually, since the initial
state can always be set so that it produces a probabilistic
transition to a set of states immediately following the first
action. However, it is syntactically convenient to allow ex-
plicit initial distributions, so we include this feature.

Will there be continuous variables or simulated
physics?

Not at this time, no. Although these would be critical for
representing many important domains (like billiards, say),
we are not aware of any planners that can exploit represen-
tations of this kind. We hope the community is able to move
in this direction in the future.

I haven’t seen anything about partial observability. Will
it be supported?

Planning in partially observable domains is very impor-
tant and it is a direction we believe the community should
pursue. At this time, however, there are a greater number
of planning algorithms that can make use of complete in-
formation, so the IPC-4 will feature complete observability
exclusively (MDPs, not POMDPs).

Our domain description language does support partial ob-
servability, since fluents can be explicitly marked as:un-
observable . The hidden fluents will not be available for
decision making.

No test domains in the competition will include unob-
servable fluents, so partially observability is not supported
in IPC-4.

How will the competition be run?
The probabilistic track will follow the same procedure

as the classical track of IPC-4 (seehttp://ipc.icaps-
conference.org/). The current plan is as follows:

• Test domains will be distributed and all experiments will
be run by competitors prior to the ICAPS 2004 confer-
ence, not on site.

• Our intention is to provide an extra room at the conference
in which the results can be viewed in detail throughout
the conference, after a ceremony announcing results and
recognizing the “winners”.

• In addition, we plan to distribute a handout containing ab-
stracts describing the competing planners.

• These events might be supported by a separate competi-
tors’ workshop.

Sounds good. But, what will we use for test problems?
Good question. The organizers of the classical track are

moving toward more practical problems, but this first instan-
tiation of the probabilistic planning track will be more about
realistic expectations than realistic problems.

There will definitely be a noisy blocks world and a noisy
logistics problem. Other problems that showcase the prob-
abilistic representation will also be included, but the details
are not yet available.

In future years, once the foundation has been laid, prob-
lems of practical interest should be introduced, for example
planning in a Mars rover with continuous resource manage-
ment.

How will plans be represented?
In the classical track, a plan is a series of operators. A

successful plan is one that, when applied to the initial state,
achieves the goal.

Life is not so easy in the probabilistic track. While
there are many proposals for plan representations in non-
deterministic environments (straightline plans, plan trees,
policy graphs, triangle tables, etc.), none is considered a
widely accepted standard. In addition, even simple plans are
challenging to evaluate exactly in a non-deterministic envi-
ronment, as all possible outcomes need to checked and com-
bined.

For these reasons, we plan to evaluate planners by sam-
pling or simulation. That is, the plan validator will be a
server, and individual planning algorithms will be clients.
Planners connect to the validator, receive an initial state, and
return an operator. This dialog continues until a terminating
condition is reached at which point the validator evaluates
the performance of the planner. This entire process is re-
peated several times and results averaged over the multiple
runs.

How will plans be scored, then?
The proposal to evaluate plans using a client–server

model means that the distinction between a planner and an
executor has significantly blurred. It also means that compu-
tation is no longer a one-time preprocessing cost, but some-
thing integrated with action selection itself.

Planning quality, therefore, needs to be a combination of
expected utility and running time. To a first approximation,
we’ll have two speed categories (real-time and deliberative)
and each planner should try to have the maximum expected
utility within the time bounds of its intended category.

Will the domains focus on a more MDP-like decision
theoretic reward criterion or a more AI-planning-like
goal satisfaction criterion?

In many ways, this is a false distinction. The probability
of reaching a goal is equivalent to expected reward if a re-
ward of +1 is issued upon goal achievement and all other
transitions have+0 rewards.

But, what if you have more general rewards being ac-
cumulated during execution? Would a goal-oriented
planner still be able to do something interesting?

We were just getting to that. Mathematically, general re-
ward problems can be cast as goal-achievement problems.

7

Essentially, each transition with a reward can be viewed as
a probabilistic transition to a goal state (proportional to the
reward), a probabilistic transition to a non-goal sink state
(proportional to the difference between the reward and the
maximum possible reward), and a probabilistic transition to
the next state (proportional to the original transition proba-
bility). Majercik & Littman (2003) provide this argument in
more depth and give citations for papers on this topic.

Based on this mapping, it ought to be possible to write
a converter that creates a goal-oriented problem from a
reward-based problem. Whether this results in a competi-
tive planner is an open question, however.

Note that one or more of the test domains will use only a
goal-type performance objective. A description of the(re-
ward) fluent appears in the second section.

What about nondeterministic planning?
Depending on the number of groups that are interested, all

the test domains will also be evaluated in “nondeterministic”
mode. Although the nondeterministic planning community
is making progress independently of the probabilistic plan-
ning and MDP communities, the IPC-4 organizers were not
able to identify an individual to spearhead a separate nonde-
terministic track. As such, we hope to include this commu-
nity as part of the probabilistic track. We will make sure that
several test domains remain sensible when detailed proba-
bility values are ignored.

Is there room for reinforcement-learning methods?
We welcome reinforcement-learning approaches to the

domains we will use in the competition. At this time, we
are not planning a special subtrack in reinforcement learn-
ing (no domain model provided). Contact the organizers
(probplan-panel@cs.rutgers.edu) if you might be in-
terested so we can gauge the appeal of something like this.
There is a good chance that the line separating learning from
planning will blur considerably in the next decade, so it is
our hope that the competition will move the community in
this direction.

Will there be opportunities to use other kinds of learn-
ing?

Yes, because we will provide the formal descriptions for
some of the domains in advance, there will be an opportunity
for groups to learn about these domains in advance. For at
least one domain, we hope to have an explicit parameterized
generator for problems, which will be available well in ad-
vance of the competition. In this case, approaches that try to
generalize planning strategies from solving small instances
will have an opportunity to benefit from this information.

What is the competition timeline?
• For September 30, 2003, we are asking for brief state-

ments of interest in participating in IPC-4. An alpha ver-
sion of the client-server validator is now available and a
more stable beta version will be distributed to friendly
users on request.

• Fall 2003, we will deliver to the research community on
the initial release of the domain description language, fix
any important problems with the domains, problems, and
evaluation metrics.

• January 2004, several test domains with automated prob-
lem generators will be distributed to the research commu-
nity for use by groups interested in studying “learning to
plan”. These domains will be used in the competition with
previously unreleased problems.

• In June 2004, IPC-4 will be held in Vancouver. Planners
will be run on the competition problems at least one week
prior to the conference, with analysis and results to be
announced at the conference. Results and test domains
will be released publicly.

Is there something else I should be asking?
Almost certainly, but we’ve run out of answers at this

point. The most important thing is that there is a lot
of work still to be done and we’ll need your help. If
you would like to participate in any way, please con-
tact mlittman@cs.rutgers.edu . We are maintaining a
list to discuss the design of the competition (probplan-
panel , currently 13 people signed up) and one to make an-
nouncements to anyone interested in the area (probplan-
announce , currently 87 people signed up). There will also
be a list specific to groups who will enter planners in the
competition. We hope you will be able to contribute!

Probabilistic PDDL
We present extensions to PDDL 2.1 allowing for the mod-
eling of MDP domain models. Familiarity with PDDL 2.1
syntax (Fox & Long 2002) is assumed as we only present
the syntax of new language constructs here.

Probabilistic Effects
A defining aspect of MDP domain models is that actions can
have probabilistic effects. We adopt a model of stochastic
actions that is a variation offactored probabilistic STRIPS
operators(Dearden & Boutilier 1997). A stochastic ac-
tion a consists of a preconditionφ and a consequence
set C = {c1, . . . , cn}. Each consequenceci has a trig-
ger conditionφi with a corresponding effects listEi =
〈pi

1, E
i
1; . . . ; pi

ki
, Ei

ki
〉, where Ei

j is a set of literals and
pi

j ∈ [0, 1] is a probability associated with thejth effect set.

We require that
∑ki

j=1 pi
j = 1 and that consequences with

mutually consistent trigger conditions havecommutativeef-
fects. The latter means that the successor state is the same
after applying an action to a states regardless of the order
in which the acting effect sets of enabled consequences are
applied tos.

The precondition of a stochastic action serves as a fac-
tored trigger condition common to all consequences inC.
An action therefore has no effects if it is executed in a state
where its precondition does not hold. The full semantics of
stochastic actions is provided elsewhere (Younes 2003).

We can specify a stochastic action by extending the PDDL
syntax for action effects with a probabilistic construct sim-
ilar to that used by Bonet & Geffner (2001). Figure 1
shows the proposed extension. A new requirements flag,
:probabilistic-effects , is used to indicate that sup-
port for probabilistic effects is required.

8

<effect> ::= <d-effect>
<effect> ::= (and <effect>*)
<effect> ::= :conditional-effects (forall (<typed list(variable)>) <effect>)
<effect> ::= :conditional-effects (when <GD> <d-effect>)
<d-effect> ::= :probabilistic-effects (probabilistic <prob-eff>+)
<d-effect> ::= <a-effect>
<prob-eff> ::= <probability> <a-effect>
<a-effect> ::= (and <p-effect>*)
<a-effect> ::= <p-effect>
<p-effect> ::= (not <atomic formula(term)>)
<p-effect> ::= <atomic formula(term)>
<p-effect> ::= :fluents (<assign-op> <f-head> <f-exp>)
<probability> ::= Any rational number in the interval[0, 1].

Figure 1: PDDL extension for probabilistic effects.

There is a clear correspondence between the syntax and
the representation of stochastic actions introduced above.
An effects list is specified as

(probabilistic pi
1 Ei

1 . . . pi
ki

Ei
ki

) .

The above statement also represents a consequence with a
trigger conditionφi = true. Consequences with non-trivial
trigger conditions are specified using conditional effects:

(when φi (probabilistic pi
1 Ei

1 . . . pi
ki

Ei
ki

))

Figure 2 shows a domain description with stochastic ac-
tions. A statement such as

(probabilistic 0.9 (and (clear ?x) ...))

with the probabilities not adding up to 1 is meant as a syn-
tactic sugar for

(probabilistic 0.9 (and (clear ?x) ...)
0.1 (and)) ,

where(and) represents an empty effect set.
Numeric effects can be used in combination with proba-

bilistic effects, although this could result in a stochastic pro-
cess with an infinite state space. This could be remedied by
introducing a bounded integer type,(integer low high) ,
in addition to the standard PDDL type,number , for func-
tional expressions. This would provide a straightforward
way of ensuring a finite state space. For example,

(:functions (power ?x) - (integer 0 10))

would effectively define an integer state variablepowerx ∈
[0, 10] for each objectx in the domain. This is not a language
feature we expect to introduce for the 2004 competition,
however, so numeric effects will not be used in the proba-
bilistic track except to express rewards (explained next).

Rewards and Goals
Markovian rewards can be encoded using fluents. We re-
serve the functional expression(reward) to represent the
total accumulated reward since the start of execution. The
accumulated reward is not considered part of the state space,
so (reward) will never occur in action preconditions and
effect conditions. The reward is of course zero in the initial
state. A new requirements flag,:rewards , is introduced to
signal that support for rewards is required. Rewards will be
encoded as action effects as shown in Figure 3.

Figure 4 defines a probabilistic domain with rewards. The
reward is+100 for opening the door that the tiger is not be-
hind it, and there is a−100 reward for opening the door that
the tiger is behind. The figure also includes a problem defini-
tion. We have used the plan metric introduced in PDDL 2.1
to specify that the objective is to maximize the accumulated
reward. The problem definition also shows how to specify a
probability distribution over initial states. The statement

(:init (probabilistic 0.5 (tiger-on-left)))

means that the probability is 1/2 that the tiger is behind the
left door in the initial state. Predicates not mentioned are
assumed false in the initial state (closed-world assumption).

Regular PDDL goals will be used to express goal-type
performance objectives. A goal statement(:goal φ) for
a probabilistic planning problem encodes the objective that
the probability of achievingφ should be maximized. We
can transform this into a reward-oriented problem, as dis-
cussed earlier, by making all states satisfyingφ absorbing,
assigning a reward of+1 to transitions into such a state, and
assigning zero reward to all other transitions.

Acknowledgments

David Andre, Bob Givan, Carlos Guestrin, Terran Lane,
Nicolas Meuleau, Ron Parr, Christian Shelton, and others
asked some of the questions.

References

Bonet, B., and Geffner, H. 2001. GPT: A tool for planning
with uncertainty and partial information. InProceedings of
the Seventeenth International Joint Conference on Artifi-
cial Intelligence Workshop on Planning under Uncertainty
and Incomplete Information, 82–87.

Boutilier, C.; Friedman, N.; Goldszmidt, M.; and Koller,
D. 1996. Context-specific independence in Bayesian net-
works. InProceedings of the Twelfth Annual Conference on
Uncertainty in Artificial Intelligence (UAI 96), 115–123.

Dean, T., and Kanazawa, K. 1989. A model for reason-
ing about persistence and causation.Computational Intel-
ligence5(3):142–150.

9

(define (domain fuzzy-blocks-domain)
(:requirements :probabilistic-effects)
(:predicates (on ?x ?y) (ontable ?x) (clear ?x) (handempty) (holding ?x))
(:action pick-up

:parameters (?x)
:precondition (and (clear ?x) (ontable ?x) (handempty))
:effect (probabilistic 0.9 (and (not (ontable ?x)) (not (clear ?x))

(not (handempty)) (holding ?x))))
(:action put-down

:parameters (?x)
:precondition (holding ?x)
:effect (and (not (holding ?x)) (clear ?x) (handempty) (ontable ?x)))

(:action stack
:parameters (?x ?y)
:precondition (and (holding ?x) (clear ?y))
:effect (and (not (holding ?x)) (clear ?x) (handempty)

(probabilistic 0.95 (and (not (clear ?y)) (on ?x ?y))
0.05 (ontable ?x))))

(:action unstack
:parameters (?x ?y)
:precondition (and (on ?x ?y) (clear ?x) (handempty))
:effect (probabilistic 0.9 (and (holding ?x) (clear ?y) (not (clear ?x))

(not (handempty)) (not (on ?x ?y))))))

Figure 2: Blocks-world domain with actions having probabilistic effects.

<p-effect> ::= :rewards (increase (reward) <number>)
<p-effect> ::= :rewards (decrease (reward) <number>)

Figure 3: Syntax for rewards as action effects.

(define (domain tiger-domain)
(:requirements :negative-preconditions :conditional-effects

:probabilistic-effects :rewards)
(:predicates (tiger-on-left) (hear-tiger-on-left))
(:action listen

:effect (and (when (tiger-on-left)
(probabilistic 0.85 (hear-tiger-on-left)

0.15 (not (hear-tiger-on-left))))
(when (not (tiger-on-left))

(probabilistic 0.85 (not (hear-tiger-on-left))
0.15 (hear-tiger-on-left)))))

(:action open-left-door
:effect (and (when (not (tiger-on-left)) (increase (reward) 100))

(when (tiger-on-left) (decrease (reward) 100))))
(:action open-right-door

:effect (and (when (tiger-on-left) (increase (reward) 100))
(when (not (tiger-on-left)) (decrease (reward) 100)))))

(define (problem tiger-problem)
(:domain tiger-domain)
(:init (probabilistic 0.5 (tiger-on-left)))
(:metric maximize (reward))

Figure 4: Domain and problem definitions with rewards.

10

Dearden, R., and Boutilier, C. 1997. Abstraction and
approximate decision-theoretic planning.Artificial Intel-
ligence89(1–2):219–283.
Fox, M., and Long, D. 2002. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Techni-
cal Report 20/02, University of Durham, Durham, UK.
Littman, M. L. 1997. Probabilistic propositional planning:
Representations and complexity. InProceedings of the
Fourteenth National Conference on Artificial Intelligence,
748–754. AAAI Press/The MIT Press.
Majercik, S. M., and Littman, M. L. 2003. Contingent
planning under uncertainty via stochastic satisfiability.Ar-
tificial Intelligence147(1–2):119–162.
Younes, H. L. S. 2003. Extending PDDL to model stochas-
tic decision processes. InProceedings of the ICAPS-03
Workshop on PDDL.

11

