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Preface

From a research perspective, running a competition pushes the envolope in
the development and implementation of new or improved algorithms and data
structures. The fourth international planning competition, IPC-4 for short, has
attracted many competitors, and we as the organisers hope that the event will
be a significant step in promoting the acceptance and applicability of planning
technology.

The competition and its organisation is splited into two parts. On the one
hand, there is the classical part that, in continuation of the previous competition
events, considers “classical” fully deterministic and observable planning. On the
other hand, there is — for the first time in the history of the event — a probabilistic
part, featuring factored encodings of fully observable Markov decision problems.
In both parts, variations of PDDL as the common language lay the basis for the
competition.

The 4th IPC has several exciting aspects. On the one hand, the classical
track features more realistic benchmark domains, formulated (in part) with
the help of two new language extensions. There is an extra track for optimal
planners (planners that give a guarantee on the quality of the returned solution),
and with round about 20 competing systems the event is even a little larger
than its already large predecessors. The existence of the probabilistic part is,
of course, exciting in itself. It is a great success in that it also attracted several
competing systems, since the probabilistic competition is completely new!

Talking about competing systems, the organisers wish to say a big “thank
you” to all the participating teams for their efforts. There is significant bravery
in the submission of a planning system to a competition, where the choice and
design of the benchmark problems is up to the competition organisers, not to
the individuals!

It is the first time that a booklet like this is distributed at the host con-
ference. The organisers hope that, with this booklet, the transparency and
understandability of the competition event, at the time of its happening (or
at least shortly after), will greatly improve, given that over 60 authors have
contributed to it. The actual results of the competition are, of course, not yet
collected at the time of writing. The results will be made available at ICAPS’04
in the form of posters that will be put up in the coffee break room.

The booklet is divided into two parts, one about the classical part of IPC-4,
one about the probabilistic part. Both parts contain extended abstracts written
by participating teams, describing their planner or their planners — each team
was allowed to enter (at most) two competing systems. Note that the abstracts
were written while the competition was still running, so the abstracts might
not describe the full functionalities of the final system versions. Each part of
the booklet also includes a brief presentation of the PDDL variant used. For
the classical part we have added an extra abstract giving short description of
our benchmark domains, to give people an idea of what kinds of problems the



planners were tested on, and how we created these problems.
We hope that, by reading this booklet, everybody receives an impression of
the the fun, importance and charme of this year’s competition event. We wish

all of you an exciting conference!

Stefan Edelkamp and J6rg Hoffmann (co-chairs classical track)
Michael Littman and Hakan L. S. Younes (co-chairs probabilistic track)
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PDDL2.2: The Language for the Classical Part of IPC-4
— extended abstract —

Stefan Edelkamp Jorg Hoffmann
Fachbereich Informatik Institut fur Informatik
Baroper Str. 301, GB IV Georges-Kohler-Allee, Geh. 52
44221 Dortmund, Germany 79110 Freiburg, Germany
stefan.edelkamp@cs.uni-dortmund.de hoffmann@informatik.uni-freiburg.de
Introduction competition benchmark (we use the name “derived predi-

The 3rd International Planning Competition, IPC-3, was run  cates” instead of “axioms” in order to avoid confusion with
by Derek Long and Maria Fox. The competition focussed safety conditions).

on planning in temporal and metric domains. For that pur-

pose, Fox and Long developed the PDDL2.1 language (Fox Syntax

& Long 2003), of which the first threlevelswere used in - The BNF definition of derived predicates involves just two

IPC-3. Level 1 was the usual STRIPS and ADL planning, small modifications to the BNF definition of PDDL2.1:
level 2 added numeric variables, level 3 added durational

constructs. <structure-def> =

In this document, we describe the language, named <derived-def>
PDDL2.2 used for formulating the domains used in the clas- The domain file specifies a list of “structures”. In
sical part of IPC-4. As the language extensions made for ppp| 2.1 these were either actions or durational actions.

IPC-3 still provide major challenges to the planning commu-  Now we also allow “derived” definitions at these points.
nity, the language extensions for IPC-4 are relatively mod-

erate. The first three levels of PDDL2.1 are interpreted as <derived-def> ::= (:derived <atomic

an agreed fundament, and kept as the basis of PDDL2.2. formula(term)> <GD>)

PDDL2.2 also inherits the separation into the three levels.  The “derived” definitions are the “rules” mentioned
The !angua_ge features added on top pf PDI_DI___Z.IJIgria/ed above. They simply specify the predicate to be de-
predlcates(mto levels 1,2, and 3) antimed initial Ilteralls rived (with variable vectors), and the formulas(z) from
(into level 3 only). Both of these constructs are practically \yhjch instances of can be concluded to be true. Syntacti-
motivated, and are put to use in some of the competition cally, the predicate and variables are given by<h®omic
dpmains. Details on the constructs are in the respective SeC-formula(term)> expression, and the formula is given
tions. o _ _ _ , by <GD>(a “goal descrption”, i.e. a formula).

The next section discusses derived predicates, includinga “the BNF is more generous than what we actually allow
brief de.scription of th.eir syntax, and the definition of th.eir in PDDL2.2, respectively in IPC-4. We make a number of
semantics. The section after that does the same for timed rggyrictions to ensure that the definitions make sense and are
initial literals. Full details, including a BNF description of easy to treat algorithmically. We call a predicdtaderived
PDDL2.2, can be found in a technical report (Edelkamp & i there is a rule that has a predicdtdn its head: otherwise

Hoffmann 2004). we call P basic The restrictions we make are the following.

:derived—predicates

Derived Predicates 1. The actions available to the planner do not affect the de-

Derived predicates have been implemented in several plan- rived predl_cates: no denv_ed pr_edlcate occurs on any of
ning systems in the past, including e.g. UCPOP (Penberthy ~ the effectlists of the domain actions.

& Weld 1992). They are predicates that are not affected by 2. If a rule defines thaP(z) can be derived from(z), then

any of the actions available to the planner. Instead, the pred- the variables irr are pairwise different (and, as the no-
icate’s truth values are derived by a set of rules of the form  tation suggests, the free variables¢gfr) are exactly the

if ¢(z) then P(z). The semantics are, roughly, that an in- variables inz).

SLanqgi tgfe?rgei}r:lsvtztrj]tlija:teeddlcv%}teh (c?o?]eszg/r?tdéarz;:t,e?cl)(r:itﬁovr\{??sse a3 If arule defines thaP () can be derived from, then the
'grRUE iff it can be derived using the available rules (more Neggtio_n I:ormgl_ Fct)rm_(NNF) f‘%(f) does not contain
details below). Under the name “axioms”, derived predi- any derived predicates in hegated form.

cates were a part of the original PDDL language defined by  The first restriction ensures that there is a separation be-
McDermott (McDermott & others 1998) for the first plan-  tween the predicates that the planner can affect (the basic
ning competition, but they have never been put to use in a predicates) and those (the derived predicates) whose truth


edelkamp
   2

edelkamp


values follow from the basic predicates. The second restric- Remember that we restrict the rules to not contain any
tion ensures that the rule right hand sides match the rule left derived predicates in negated form. This implies that the
hand sides. Let us explain the third restriction. The NNF of a order in which the rules are applied to a state does not matter
formula is obtained by “pushing the negations downwards”, (we can not “lose” any derived facts by deriving other facts
i.e. transforming-vz : ¢ into 3z : (—¢), Iz : ¢ into first). This, in turn, implies thaD(s) is itself closed under

Vo : (=), =V ¢; into A(=¢;), and— A ¢; into \/(—¢;). application of the rule. In other wordsD(s) is the least
Iterating these transformation steps, one ends up with a for- fixed point over the possible applications of the rufeso
mula where negations occur only in front of atomic formulas the state where all derived facts are assumed to be FALSE

— predicates with variable vectors, in our case. The formula (represented by their not being contained)n

contains a predicat® in negated formff there is an oc-
curence ofP that is negated. By requiring that the formulas

More constructively,D(s) can be computed by the fol-
lowing simple process.

in the rules (that derive predicate values) do not contain any

derived predicates in negated form, we ensure that there can
not be any negative interactions between applications of the

rules (see the semantics below).

An example of a derived predicate is the “above” pred-
icate in theBlocksworld, which is true between blocks
andy whenever is transitively (possibly with some blocks
in between) ony. Using the derived predicates syntax, this
predicate can be defined as follows.

(:derived (above ?x ?y)
(or (on ?x ?y)
(exists (?z) (and (on ?x ?2z)
(above ?z ?y))))

Note that formulating the truth value of “above” in terms
of the effects of the norma@locksworld actions is very awk-
ward (the unconvinced reader is invited to try). The predi-
cate is the transitive closure of the “on” relation.

Semantics

S =S
do
selecta rule(P(Z), ¢(z)) and a vector of constants,
|e| = |Z|, such that’ |= ¢(c)
lets’ := s U{P(c)}
until no rule and constant vector could be selected
letD(s) := s

In words, apply the applicable rules in an arbitrary order
until no new facts can be derived anymore.

We can now specify what an executable plan is in
PDDL2.1 with derived predicates. All we need to do is to
hook the functiorD into Definition 13, “Happening Execu-
tion”, in (Fox & Long 2003). By this definition, Fox and
Long define the state transitions in a plan. The happenings
in a (temporal or non-temporal) plan are all time points at
which at least one action effect occurs. Fox and Long’s def-
inition is this:

We now describe the updates that need to be made to theDefinition 13 Happening Execution (Fox and Long

PDDL2.1 semantics definitions given by Fox and Long in
(Fox & Long 2003). We introduce formal notations to cap-

(2003))
Given a state(t, s, x) and a happeningH, theactivity for

ture the semantics of derived predicates. We then “hook” # is the set of grounded actions

these semantics into the PDDL2.1 language by modifying
two of the definitions in (Fox & Long 2003).

Say we are given the truth values of all (instances of the)
basic predicates, and want to compute the truth values of the
(instances of the) derived predicates from that. We are in this

situation every time we have applied an action, or parallel
action set. (In the durational context, we are in this situation
at the “happenings” in our current plan, that is every time a
durative action starts or finishes.) Formally, what we want to
have is a functiorD that maps a set of basic facts (instances

Apg = {a| the name for is in H, a is valid and

Pre, is satisfied in(t, s, x)}
Theresult of executing a happening, associated with time
ty, in a state(t, s, x) is undefined ifAy| # |H]| or if any
pair of actions inAy is mutex. Otherwise, it is the state
(tg,s',x") where

§'=(s\ |J Dela)u | Add,

a€EAyg a€Ang

(% % %)

of basic predicates) to the same set but enriched with derived 5ngx is the result of applying the composition of the func-
facts (the derivable instances of the derived predicates). As- tions {NPF, | a € Ay} tox.

sume we are given the s&tof rules for the derived predi-
cates, where the elements Bfhave the form(P(z), ¢())
—if ¢(z) then P(Z). ThenD(s), for a set of basic facts, is
defined as follows.
D(s):=({s'| s C ¢,¥V(P(T),¢(T)) € R:Ve,|e| = 7| :

(s' = ¢(@) = P(©) € ¢)}

Note that the happenings consist of grounded actions, i.e.
all operator parameters are instantiated with constants. To
introduce the semantics of derived predicates, we now mod-
ify the result of executing the happening. (We will also adapt
the definition of mutex actions, see below.) The result of ex-
ecuting the happening is now obtained by applying the ac-

This definition uses the standard notations of the mOdelling tions tOS, then subtracting all derived facts from thiS, then
relation|= between states (represented as sets of facts in our gpplying the functiorD. That is, in the above definition we

case) and formulas, and of the substitutig(@) of the free

variables in formulas(z) with a constant vectat. In words,

D(s) is the intersection of all supersets othat are closed
under application of the rules.

replace(x x x) with the following:

s'=D(((s\ |J Dela)U | J Adda)\ D)

a€Ay a€Ay
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whereD denotes the set of all derived facts. If there are no
derived predicated) is the empty set an® is the identity
function.

As an example, say we have RBlocksworld instance
where A is on B is on Cgs {clear(A), on(A,B),
on(B,C), ontable(C), above(A,B), above(B,C),
above(A,C)}, and our happening applies an action that
moves A to the table. Then the happening execution
result will be computed by removingn(A, B) from s,
adding clear(B) and ontable(A) into s, removing all
of above(A, B), above(B, (), and above(A,C) from s,
and applyingD to this, which will re-introduce (only)
above(B,C). Sos" will be s = {clear(A), ontable(A),
clear(B), on(B, C), ontable(C'), above(B,C) }.

By the definition of happening execution, Fox and Long
(Fox & Long 2003) define the state transitions in a plan. The
definitions of what an executable plan is, and when a plan
achieves the goal, are then standard. The plaxésutable
if the result of all happenings in the plan is defined. This
means that all action preconditions have to be fulfilled in
the state of execution, and that no two pairs of actions in a
happening arenutex The planachieves the goaf the goal
holds true in the state that results after the execution of all
actions in the plan.

With our above extension of the definition of happening
executions, the definitions of plan executability and goal

In the presence of derived predicates, the above defini-
tion needs to be extended to exclude possible interactions
that can arise indirectly due to derived facts, in the precon-
dition of the one action, whose truth value depends on the
truth value of (basic) facts affected by the effects of the
other action. In the same spirit in that Fox and Long for-
bid any possibility of direct interaction, we now forbid any
possibility of indirect interaction. Assume we ground out
all rules(P (), ¢(x)) for the derived predicates, i.e. we in-
sert all possible vectors of constants; we also ground out
the quantifiers in the formulag(¢), ending up with vari-
able free rules. We define a directed graph where the nodes
are (ground) facts, and an edge from f&ttto fact F’ is
inserted iff there is a grounded ru{é(c), ¢(¢)) such that
F’' = P(c), andF occurs ing(c). Now say we have an ac-
tion a, where all ground facts occuring iris precondition
are, see above, denoted &6Y°re,. By DPre, we denote
all ground facts that can possibly influence the truth values
of the derived facts i Pre,:

DPre, := {F | there is a path fron¥" to anF’ € GPre,}

The definition of mutex actions is now updated simply by
replacing, in the above definitiof  *) with:

(DPreqs U GPres) N (Addy U Dely) =
(DPrey, UGPrep) N (Add, U Del,) =0

achievement need not be changed. We do, however, need As an example, reconsider tBéocksworld and the “above”

to adapt the definition of when a pair of actions is mutex.
This is important if the happenings can contain more than
one action, i.e. if we consider parallel (e.g. Graphplan-style)
or concurrent (durational) planning. Fox and Long (Fox &
Long 2003) give a conservative definition that forbids the
actions to interact in any possible way. The definition is the
following.

Definition 12 Mutex Actions (Fox and Long (2003))
Two grounded actions, andb are non-interferingf
GPreq N (Addy U Dely) = GPre, N (Addg U Delg) = 0 (*)
Add, N Dely, = Addy N Dely = 0
LoNRy=R,NLy=10
LaNLy CL:UL;
If two actions are not non-interfering they aneutex

Note that the definition talks about grounded actions
where all operator parameters are instantiated with con-
stants. L,, Ly, R,, and R, refer to the left and right
hand side ofz’s andb's numeric effects. Add,/Add, and
Del,IDel, area’s andb's positive (add) respectively neg-
ative (delete) effects.G Pre,/Gpre, denotes all (ground)
facts that occur im’s/b’'s precondition. If a precondition
contains quantifiers then these are grounded ‘autti@ans-
forms to A\ ¢;, 3z transforms tdy/ ¢; where the:; are all ob-
jects in the given instance), antPre is defined over the re-
sulting quantifier-free (and thus variable-free) formula. Note
that this definition of mutex actions is very conservative — if,
e.g., factF’ occurs only positively ire's precondition, then
it does not matter i’ is among the add effects of The
conservative definition has the advantage that it makes it al-
gorithmically very easy to figure out if or if nat andb are
mutex.

predicate. Assume that the action that moves a blddk
the table requires as an additional, derived, precondition,
that A is above some third block. Then, in principle, two
actions that move two different block$ and B to the ta-
ble can be executed in parallel. Which blodk(B) is on
can influence thebove relations in thatB (A) participates;
however, this does not matter becauselifind B can be
both moved then this implies that they are both clear, which
implies that they are on top of different stacks anyway. We
observe that the latter is a statement about the domain se-
mantics that either requires non-trivial reasoning, or access
to the world state in which the actions are executed. In order
to avoid the need to either do non-trivial reasoning about do-
main semantics, or resort to a forward search, our definition
is the conservative one given above. The definition makes
the actions movingd and B mutex on the grounds that they
can possibly influence each other’s derived preconditions.
The definition adaptions described above suffice to de-
fine the semantics of derived predicates for the whole of
PDDL2.2. Fox and Long reduce the temporal case to the
case of simple plans above, so by adapting the simple-plan
definitions we have automatically adapted the definitions of
the more complex cases. In the temporal setting, PDDL2.2
level 3, the derived predicates semantics are that their values
are computed anew at each happening in the plan where an
action effect occurs.

Timed Initial Literals

Timed initial literals are a syntactically very simple way of
expressing a certain restricted form of exogenous events:
facts that will become TRUE or FALSE at time points that
are known to the planner in advance, independently of the
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actions that the planner chooses to execute. Timed initial lit-

erals are thus deterministic unconditional exogenous events.

Syntactically, we simply allow the initial state to specify —
beside the usual facts that are true at time pointliterals
that will become true at time points greater ttian

Timed initial literals are practically very relevant: in the
real world, deterministic unconditional exogenous events
are very common, typically in the form of time windows
(within which a shop has opened, within which humans
work, within which traffic is slow, within which there is
daylight, within which a seminar room is occupied, within
which nobody answers their mail because they are all at con-
ferences, etc.).

Syntax
As said, the syntax simply allows literals with time points in
the initial state.

<init> 7= (Cinit <init-el> )
:timed—initial—1literals (at <number>
<literal(name)>)

<init-el> ::=

The requirement flag for timed initial literals implies the
requirement flag for durational actions, i.e. as said the lan-
guage construct is only available in PDDL2.2 level 3. The
times<number> at which the timed literals occur are re-
stricted to be greater than If there are also derived pred-
icates in the domain, then the timed literals are restricted
to not influence any of these, i.e., like action effects they
are only allowed to affect the truth values of the basic (non-
derived) predicates (IPC-4 will not use both derived predi-
cates and timed initial literals within the same domain).

As an illustrative example, consider a planning task where
the goal is to be done with the shopping. There is a single
action go-shopping that achieves the goal, and requires the

simple actions inSP. All ¢; must be greater thaf. Itis
possible for the sequence to be empty (an empty plan).

Thehappeningat timet, F,, wheret is in the happening
sequence of P, is the set of (simple) action names that ap-
pear in timed simple actions associated with the time
SP.

In the STRIPS case, the time stamps are the natural num-
bersl, ..., n when there are actions/parallel action sets in
the plan. The happenings then are the actions/parallel action
sets at the respective time steps. Fox and Long reduce the
temporal planning case to the simple plan case defined here
by splitting each durational action up into at least two simple
actions —the start action, the end action, and possibly several
actions in between that guard the durational action’s invari-
ants at the points where other action effects occur. So in
the temporal case, the happening sequence is comprised of
all time points at which “something happens”, i.e. at which
some action effect occurs.

To introduce our intended semantics of timed initial liter-
als, all we need to do to this definition is to introduce ad-
ditional happenings into the temporal plan, namely the time
points at which some timed initial literal occurs. The timed
initial literals can be interpreted as simple actions that are
forced into the respective happenings (rather than selected
into them by the planner), whose precondition is true, and
whose only effect is the respective literal. The rest of Fox
and Long’s definitions then carry over directly (except goal
achievement, which involves a little care, see below). The
PDDL2.2 definition of simple plans is this here.

Definition 11 Simple Plan

A simple plan SP, for a planning instance/, consists of
a finite collection oftimed simple actionsvhich are pairs
(t,a), wheret is a rational-valued time and is an action

(single) shop to be open as the precondition. The shop opensname. Byt.,q we denote the largest timein SP, or 0 if

at time 9 relative to the initial state, and closes at time 20.
We can express the shop opening times by two timed initial
literals:
(cinit

(at 9 (shop-open))

(at 20 (not (shop-open)))

Semantics

We now describe the updates that need to be made to the

PDDL2.1 semantics definitions given by Fox and Long in
(Fox & Long 2003). Adapting two of the definitions suffices.

The first definition we need to adapt is the one that defines
what a “simple plan”, and its happening sequence, is. The
original definition by Fox and Long is this.

Definition 11 Simple Plan(Fox and Long (2003))
A simple plan SP, for a planning instance/, consists of
a finite collection oftimed simple actionsvhich are pairs
(t,a), wheret is a rational-valued time and is an action
name.

Thehappening sequencf; }i—o...,. for SPis the ordered

SP is empty.

LetT'L be the (finite) set of all timed initial literals, given
as pairs (t,1) wheret is the rational-valued time of oc-
curence of the literal. We identify each timed initial lit-
eral (¢t,1) in TL with a uniquely named simple action that
is associated with tim& whose precondition is TRUE, and
whose only effect is

Thehappening sequencf; }i—o.. x for SP is the ordered
sequence of times in the set of times appearing in the timed
simple actions irt6 P andT' L. All ¢; must be greater thaé.

It is possible for the sequence to be empty (an empty plan).
Thehappeningat timet, E;, wheret is in the happening
sequence of P, is the set of (simple) action names that ap-
pear in timed simple actions associated with the tinie

SPorTL.

Thus the happenings in a temporal plan are all points in
time where either an action effect, or a timed literal, occurs.
The timed literals are simple actions forced into the plan.
With this construction, Fox and Long’s Definitions 12 (Mu-
tex Actions) and 13 (Happening Execution), as described
(and adapted to derived predicates) in Section , can be kept
unchanged. They state that no action effect is allowed to in-

sequence of times in the set of times appearing in the timed terfere with a timed initial literal, and that the timed initial


edelkamp

edelkamp
5


literals are true in the state that results from the execution of
the happening they are contained in. Fox and Long’s Defini-
tion 14 (Executability of a plan) can also be kept unchanged
—the timed initial literals change the happenings in the plan,
but not the conditions under which a happening can be exe-
cuted.

The only definition we need to re-think is that of what
the makesparf a valid plan is. In Fox and Long'’s original
definition, this is implicit in the definition of vaild plans. The
definition is this.

Definition 15 Validity of a Simple Plan (Fox and Long
(2003))

A simple plan (for a planning instancé) is valid if it is
executable and produces a final st&tesuch that the goal
specification for is satisfied inS.

The makespan of the valid plan is accessible in PDDL2.1
and PDDL2.2 by the “total-time” variable that can be used in
the optimization expression. Naturally, Fox and Long take
the makespan to be the end of the plan, the time point of the
plan’s final state.

In the presence of timed initial literals, the question of
what the plan’s makespan is becomes a little more sub-
tle. With Fox and Long’s above original definition, the
makespan would be the end of all happenings in the simple
plan, whichincludeall timed initial literals (see the revised
Definition 11 above). So the plan would at least take as long
as it takes until no more timed literals occur. But a plan
might be finished long before that — imagine something that
needs to be done while there is daylight; certainly the plan
does not need to wait until sunset. We therefore define the
makespan to be the earliest point in time at which the goal
condition becomes (and remains) true. Formally this reads
as follows.

Definition 15 Validity and Makespan of a Simple Plan

A simple plan (for a planning instancé) is valid if it is
executable and produces a final st&tesuch that the goal
specification forl is satisfied inS. The plan’smakespars

the smallest > t.,4 such that, for all happenings at times
t’ > t in the plan’s happening sequence, the goal specifica-
tion is satisfied after execution of the happening.

Remember that.,,; denotes the time of the last happen-
ing in the plan that contains an effect caused by the plan’s
actions— in simpler termsyt.,, is the end point of the
plan. What the definition says is that the plan is valid if,
at some time point after the plan’s end, the goal condi-
tion is achieved and remains true until after the last timed
literal has occured. The plan’s makespan is the first such
time pointt. Note that the planner can “use” the events
to achieve the goal, by doing nothing until a timed literal
occurs that makes the goal condition true — but then the
waiting time until the nearest such timed literal is counted
into the plan’s makespan. (The latter is done to avoid situa-
tions where the planner could prefer to wait millions of years
rather than just applying a single action itself.) Remember

be denoted byotal-time in the optimization expression
defined with the problem instance.
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Towards Realistic Benchmarks for Planning:
the Domains Used in the Classical Part of IPC-4

— extended abstract —

Jorg Hoffmann* Stefan Edelkamp
Roman Englertt Frederico Liporace® Sylvie Thiebaux! Sebastian Tiiig/!
Introduction orienting most of the IPC-4 benchmarks at application do-

mains. While traditionally planning benchmarks were more
or less phantasy products created having some “real” sce-
nario in mind, we took actual (possible) applications of plan-
ning technology, and turned them into something suitable
for the competition. In the process of adapting an applica-
tion for use in the (current form of the) IPC, inevitably some
of the realism has to give way to more pragmatic considera-
tions (expected planner performance, language capabilities,
etc.). Nevertheless, we believe that the IPC-4 domains are a
significant step into the right direction.

The second of the above listed appropriateness criteria has
traditionally been given less attention than the first one, but
we believe that it is not less important. The structure un-
derlying a testing example determines the performance of
the applied solving mechanism. This is particularly true for
plied for appropriateness were that the benchmarks should solving r_nechanism_s v_vhose performance rises and falls with
be- the quality of a heuristic they use. Hoffmann (2002)’s results

' suggest that much of the spectacular performance of modern
1. Oriented at applications — a benchmark should reflect  heuristic search planners is due to structural similarities be-
an application that the field is heading for. tween most of the traditional planning benchmarks. While
. . this does by no means imply that modern heuristic search
2. Diverse in structure — a set of benchmarks should cover — pianners aren't useful, it certainly shows that in the creation
different kinds of structure that can occur in the attacked ot penchmarks there is a risk of introducing a bias towards
problem. one specific way of solving them. In selecting the bench-
3. Suitable for basic research- a set of benchmarks fora  mark domains for IPC-4, we took care to cover a range of
field of basic research should not omit the basic aspects of intuitively very different kinds of problem structute.

that research. Finally, the third of our appropriateness criteria is prob-

i o ] ably agreed on by nobody — except all the people whose

The first of these criteria is probably the one most widely planners can only handle STRIPS. More seriously, we be-
agreed upon —indeed, Al planning has frequently been criti- Jieve that, with all the new PDDL extensions, the planning
cised for its “obsession with toy examples". In recelflt years, Communiw Ought to not let Comp|ete|y go of its most basic
the performance of state-of-the-art systems has improved |anguage. Most if not all of the algorithmic approaches that
dramatically, and with that more realistic examples came have proved successful for solving temporal and numeric
within reach. We made another step in this direction by planning problems have originally been developed for the
T Tr—— ] o ) STRIPS language. If someone has a new idea for a plan-

Institut fur Informatik, Universiat Freiburg, Germany ning algorithm or heuristic, he or she most certainly won't
Fachbereich Informatik, Universit Dortmund, Germany.  jmplement it for PDDL2.1 level 3 in the first go. There is
Supported by DFG also the issue of accessibility of the competition, particu-

*T-Mobi \
o Mobile, Germany . . larly to newcomers. We made a serious effort to make even
Departamento de Inforatica, PUC Rio, Brazil. Supported by

Today, the research discipline of Al planning is largely con-
cerned with improving the performance of general problem
solving mechanisms. Performance is measured by testing
systems on example instances of the problem to be solved.
Clearly, since no mechanism will ever be able to perform
well on all instances of a (hard) problem, one of the most
crucial issues in such a research context is what kind of ex-
amples are used for the testing. Add on top of this that, more
and more, researchers draw their testing examples from the
collections used in the IPC, and it becomes evident that the
IPC benchmarks are nowadays one of the most important
instruments for the field.

In the organisation of the (classical part of the) 4th IPC,
we therefore invested considerable effort into creating a set
of “appropriate” benchmarks for planning. The criteria ap-

CNPq. 1We even thought of separating the domains into a set of “appli-
National ICT Australia & Computer Sciences Laboratory, The  cation” benchmarks and a set of “structurally characteristic” bench-

Australian National University, Canberra, Australia marks. We gave up on the idea to not overly complicate the com-
Institut fiir Informatik, Universiat Freiburg, Germany petition and its evaluation.
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the STRIPS versions of the IPC-4 domains an interesting discussion with the IPC-4 organising committee, we decided
range of benchmarks. Instead of dropping the more interest- against this language feature as it seemed problematic from
ing problem constraints, weompiledas much of the domain an algorithmic point of view, and didn't seem to be very
semantics as possible down into the STRIPS format. While relevant anywhere except in Airport.
in most cases this lead to rather unusual (fully grounded) en-  In all the domain versions, the problem constraints are
codings, we believe that the IPC-4 STRIPS benchmarks are modelled using ADL, i.e., complex preconditions and condi-
structurally a lot more interesting than most of the previous tional effects. We compiled the ADL encodings to STRIPS
STRIPS benchmarks. by grounding out most of the operator parameters (for each

In the rest of this extended abstract, we include a short individual problem instance, yielding an instance-specific
description of each of the IPC-4 domains. We list the do- domain file). The resulting STRIPS encodings formed al-
mains in alphabetical order, and close the article with a few ternativeformulationsof the domain versions, i.e. within
concluding remarks. each domain version we let the competitors choose to either
attack the ADL formulation or the STRIPS formulation. The
data were then evaluated together, i.e. treated as if they were
all obtained on the same encoding. We applied this concept
of domainversionsand domairversion formulationsn all
the IPC-4 domain$.

The Airport example instances were generated by Sebas-
tian Trug, using an airport simulation tool, callédtras by

Airport

The Airport domain was developed by Hoffmann and
Sebastian Trg. It is a PDDL adaption of an application
domain developed by Wolfgang Hatzack (Hatzack & Nebel
2001), dealing with the problem of controlling the ground
traffic on an airport (in such a way that the summed up travel
time of all airplanes is minimised). Wolfgang Hatzack. Five scaling airport topologies were de-

The problem instances in Airport specify the topology of signed, the simulator was run, and code was implemented
the airport, as well as the inbound (planes that need to go to that, during a simulation, put out the traffic situations at se-
a parking position) and outbound (planes that need to go to a lected individual time spots as the PDDL problem instances.
runway) traffic. The main problem constraint is that planes 50 traffic situations were generated, and put out in the for-
must not endanger each other. Which means that no two mat needed for each of the domain versions. The second
planes can share the same airport segment, and that a plandargest of the five airport topologies corresponds to one half
with running engines “blocks” a set of segments behind it 0f Munich airport, MUC. The largest of the topologies cor-

(where the blocked set depends on the size category of the responds directly to the full MUC airport.

plane). The available actions are to “pushback” (move a
plane away backwards from a parking position), to “startup”
the engines, to “move” between segments, to “park” (turning
off the engines), and to “takeoff” (which amounts to remov-
ing the plane from the airport).

The Airport domain versions areon-temporal tem-
poral, temporal-timewindowsand temporal-timewindows-
compiled The first of these versions is, as the name sug-

gests, non-durational PDDL. In the second version, actions
take time (e.g. moving across a segment takes the length of
the segment divided by the speed of the plane). In the third

version, there are additional time windows during which cer-

tain segments must not be used — namely, segments that be

long to a runway and time windows during which a plane
is known to land on that runway. The time windows are
modelled using timed initial literals. In the fourth domain
version, the timed initial literals are compiled into artificial
(temporal) PDDL constructs, in order to make the domain
version accessible to more planners.

In none of the domain versions were we able to model the
true optimisation criterion — minimising makespan means
minimising the travel time of the latest plane, rather than
the summed up travel time of all planes. The difficulty in
modelling the real optimisation criterion lies in accessing the

time spans during which a plane does nothing, i.e., stays on

an airport segment waiting until some other plane got out of
the way. If one uses an explicit “wait” action, then one needs
to introduce a discretisation of time (in order to say how long

Pipesworld

The Pipesworlddomain is a PDDL adaption of an appli-
cation domain developed by Frederico Liporace and others
(Milidiu, dos Santos Liporace, & de Lucena 2003), deal-
ing with complex problems that arise when transporting oil
derivative products through a pipeline system. Note that,
while there are many planning benchmarks dealing with
variants of transportation problems, transporting oil deriva-
tives through a pipeline system has a very different and char-
acteristic kind of structure. The pipelines must be filled with
liquid at all times, and if you push something into the pipe at

‘one end, something possibly completely different comes out

of it at the other end. Additional difficulties that have to be
dealt with are, e.ginterface restrictiongdifferent types of
products that must not interface each other in a piek-

age restrictionsin areas (i.e., limited storage capacity de-
fined for each product in the places that the pipe segments
connect), andieadlineson the arrival time of products. In
the form used in IPC-4, the Pipesworld domain was devel-
oped by Frederico Liporace andrg Hoffmann. In all ver-
sions of the domain, the product amounts dealt with are dis-
crete in the sense that we assume a smallest product unit,
called “batch”. Of course, in reality the product amounts
dealt with are rational numbers. Using such a numeric en-

2\We are aware that encoding details can have a significant im-
pact on system performance. On the other hand, we believe it is

the plane is supposed to wait). We considered introducing important to keep the number of distinction lines in the competi-

a special “current-time” variable into PDDL2.2, returning
the time of its evaluation in the plan execution. But, in a

tion data — which is already high — as low as possible. Most current
systems ground the operators out as a pre-process anyway.
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coding in IPC-4 seemed completely infeasible due to com- ated. (Within a network, the instances scaled in terms of the
plications in the modelling, and the expected capabilities of total number of batches and the number of batches with a
the participating planners. goal location.) For the instances featuring tankage restric-
The problem instances in Pipesworld specify the topol- tions or deadlines, the generation process was more compli-
ogy of the pipeline network, the initial positions for all the cated because we wanted to make sure to obtain only solv-
batches and the goal positions for some of the batches, andable instances. For the tankage restriction examples, we ran
the additional constraints imposed — interface restrictions, Mips on the respective “notankange” instances, with incre-
tankage restrictions, and/or deadlines. A possible action is mentally growing tankage. We chose each instance at a ran-
to “push” a batch from an area into a pipe segment, making dom point between the first instance solved by Mips, and the
the last batch in the pipe come out at the other end. Pipe maximum needed tankage (enough tankage in each area to
segments are modelled in a directional fashion, and we also accommodate all instance batches). Some instances could
need the inverse “pop” action where a new batch is inserted not be solved by Mips even when given several days of run-
at the far end of the pipe, and the first batch in the pipe comes time, and for these we inserted the maximum tankage. For
out. In the actual PDDL encodings used, these actions are the deadline examples, we ran Mips on the corresponding
split in several ways, to ease the modelling of their seman- instances without deadlines, then arranged the deadline for
tics. The main difficulty is that the actions must keep track each goal batch at a random point in the interval between the
of the internal state of the pipe segment involved. We intro- arrival time of the batch in Mips’s plan, and the end time of
duced special case actions for pipe segments of length 1 (i.e., Mips’s plan. The instances not solved by Mips were left out.
1 batch). For pipe segments containing more than 1 batch,
we split the push (pop) action into a push-start (pop-start) Promela
and a push-end (pop-end) action. While there is in principle
no problem with doing the necessary updates within a sin- Promelais the input language of the ACM awarded model
gle action, such an action contains rather many parameters.checker SPIN (Holzmann 1997). It is designed to ease spec-
In particular, 3 parameters ranging over batches are neededification of asynchronous communication protocols, which
— the batch to be pushed (poped), the first batch inside the are to be validated by SPIN for having no specification error.
pipe segment, and the last batch inside the pipe segment. Otherwise the tool returns an error trail as a counterexample.
Thus such an action has at leastground instances in the A Promela model consists of a set of processes, and commu-
presence of, batches. We found that this made the domain nication between them is performed via message queues or
completely infeasible for any planner that grounded out the shared access to global variables. Each process can nonde-
actions. In the splited encoding, each action takes at most terministically choose one of its transitions that fulfills the

two batch parameters. condition an optional guard imposes. The IPC-4 Promela
The Pipesworld domain versions areotankage-  domain was created by Stefan Edelkamp.

nontemporal tankage-nontemporal notankage-temporal To allow STRIPS encodings for IPC-4, we selected two

tankage-temporal notankage-temporal-deadlines and simple communication protocols: a solution for tB&ing

notankage-temporal-deadlines-compiled\ll versions in- Philosopherproblem, and théptical Telegraphprotocol.

clude interface restrictions. The versions with “tankage” in Both domains restrict to pure message passing, so that no
their name include tankage restrictions. In the versions with shared access to global variables is used. The models are
“temporal” in their name, actions take (different amounts distributed together with our experimental model checking
of) time. The motivation for the durative actions, from an tool HSF-SPIN (Edelkamp, Leue, & Lluch-Lafuente 2004),
operational point of view, is that each pipeline segment thatextends SPIN with heuristic search strategies to improve
has a maximum flow rate, and thus the content of some error detection. In both cases we used one scaling parame-
segments may be moved faster than others. The versionster, namely the number of philosophers and the number of
with “deadlines” in their name include deadlines on the control stations, respectively.
arrival of the goal batches. One of these versions models In order to generate problem instances fully automati-
the deadlines using timed initial literals, in the other version cally, we apply a compiler that transforms Promela speci-
(naturally, with “compiled” in its name) these literals are fications into PDDL2.2. The compilation process and an ex-
compiled into artificial (temporal) PDDL constructs. None position for one of the protocols are described in (Edelkamp
of the encodings uses any ADL constructs, so of each 2003). The compiler features some but not all static lan-
version there is just one (STRIPS) formulation. guage constructs of Promela. Although not covered by the
The Pipesworld example instances were generated by IPC-4 benchmark set, the work also showed that including
Frederico Liporace, in a process going from random gen- communication via global variables and assignments of (not
erators to XML files to PDDL file$. Five scaling network necessarily linear) arithmetic expressions to variables can be
topologies were designed. For the domain versions with- expressed in PDDL2.2. Besides deadlocks, violations to as-
out tankage restrictions and deadlines, for each of the net- sertions and global invariances can also be converted into
work topologies 10 scaling random instances were gener- PDDL2.2 planning goals. For more complex error descrip-
tions, e.g. liveness errors, temporally extended goals are
3The same XML file is mapped into different PDDL files de- Nneeded. One of the core differences between Promela and
pending on the kind of encoding used; there was a lot of trial and PDDL2.2 expressiveness are dynamic processes. An ac-
error before we came up with the final IPC-4 encoding. cording PDDL model would require a language extension
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for dynamic object creatianFortunately, the core of most  power distribution system to resupply customers affected by
Promela specifications in our own collection is static. the faults. A power distribution system is viewed as a net-
Both protocols are known to contain deadlocks. In the work of electric lines connected by switches and fed via a
PDDL2.2 descriptions, we utilised the finite state automata number of power sources. When a power source feeds a
representation for the processes and communication queuedaulty line, the circuit-breaker fitted to this source opens to
that is inferred by SPIN. All active Promela processes are protect the rest of the network from overloads. This leaves
typed, enumerated and assigned to a unique object id. Eachall the lines fed by the source without power. The prob-
process consists of local states and transitions, with the lem consists in planning a sequence of switching operations
gueue read and write operations specifically tagged. In the (opening or closing switches and circuit-breakers) bringing

PDDL model, a local state transition is fiesttivatedbefore the network into a configuration where non-faulty lines are
according changes to the state variables or updates to theresupplied.
gueue are executed. Finally the state changeeiformed In the original PSR problem (T@baux & Cordier 2001),

To ease parsing, state transitions use a reduced ASCII set. various numerical parameters such as breakdown costs and

Queues model communication channels, in which mes- power margins need to be optimised, subject to power ca-
sages (and optional data) is written and read by the pro- pacity constraints. Furthermore, the location of the faults
cesses. The main idea in modelling queues is to representand the current network configuration are only partially ob-
arrays of size; in a ring structure: bucketis the successor  servable, which leads to a tradeoff between acting to re-
of bucketk — 1 with a head and a tail pointer that are moving. supply lines and acting to reduce uncertainty. In con-
A queue is either empty or full if both pointers refer to the trast, the version used for IPC-4 is set up as a pure goal-
same queue state. As a special case the queues can consist efchievement problem (the goal specifies which lines must
only one queue state, so the successor bucket of bucket 0 isbe (re)-supplied), numerical aspects are ignored, and to-
the bucket itself. In this case the grounded propositional en- tal observability is assumed. The choice of leaving out
coding includes operators with add and delete lists that share the numerical aspects was motivated by the difficulty of
the same atom, so that we rely on the semantics of STRIPS, encoding and solving even the basic problem. The IPC-
saying that deletion is done first. 4 PSR domain was developed by Sylvie @aux and

If the message for reading does not match or the queue Jorg Hoffmann. We benefited from contributions by Pier-
capacity is either too small or too large, the according local giorgio Bertoli, Blai Bonet, Alessandro Cimatti, and John
state transitions will block. If all active transitions in a pro-  Slaney, some of which are reported in (Berttial. 2002;
cess block, the process itself will block. If all processes are Bonet & Thiébaux 2003).
blocked, we have a deadlock in the system. Detection ofa pSR problem instances specify (1) the network topology,
deadlock is crucial and is implemented either as a collection j.e., the objects in the network (the lines, the switches, the
of PDDL2.1 actions or, more elegantly, as a set of PDDL2.2 sources/circuit-breakers), and their connections, (2) the ini-
derived predicates, automatically inferring that all processes tial configuration, i.e., the initial positions (open/closed) of
for a state transition are blocked. the switches and circuit-breakers, and (3) the modes (faulty

With each protocol we provide four different domain ver-  or not) of the various lines. Among those, only the devices’
sions: plain, a purely propositional specification with spe-  positions can change. A number of other predicates are de-
cific actions that have to be applied to fix the deadldtik; rived from these basic ones. They model the propagation
entsan alternative to the above with numerical state vari- of the current into the network with a view to determining
ables that encodes the size of the queues and the messageghich lines are currently fed and which sourcesaffected
used to access their conterdgrivedpredicateswvhich con- by a fault, i.e. feed a fault. The closed-world assumption
tains derived predicates to infer deadlocks; dhants- semantics of PDDL2.2 derived predicates is exactly what is
derivedpredicateswhich is equivalent talerivedpredicates  needed to elegantly encode such relations. These require a
and uses fluents instead of propositions for encoding queue recursive traversal of the network paths which is naturally
sizes and messages. We use one formulation that uses theepresented as the transitive closure of the connection rela-
ADL constructsquantification disjunctiveandnegated pre- tion of the network.
conditions and one where the same semantics are compiled  The goal in a problem instance asks that given lines be
into pure (propositional) STRIPS. Unfortunately, the larger fed and all sources be unaffecttdThe available actions
problem instances of these STRIPS formulations were t00 zre closing and opening a switch or a circuit-breaker. In ad-
big to be stored on disk. We kefiientdomains as sep- (ition, there is an actiowait, which models the event of
aratedversionsinstead of differentformulationsto com- circuit-breakers opening when they become affected. Wait
pare pure propositional and numerical exploration efficien- s applicable when an affected source exists, and is the only
cies and to emphasise that numerical state variables are esppjicable action in that case. The goal and this together

sential for more complex model checking domains. ensures that the wait action is applied as soon as a source
is affected. The effect of the wait action is to open all the
PSR affected circuit-breakers. It would have been possible to en-

The Power Supply Restoration (PSBpmain is a PDDL code the opening of affected breakers as a conditional effect
adaptation of an application domain investigated by

Thiébaux and others (Tébauxet al. 1996; Thébaux “Note that after the circuit-breaker of an affected source opens,
& Cordier 2001), which deals with reconfiguring a faulty this source is not affected any more, as it does not feed any line.
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of the close action. However, this would have required more stances in STRIPS, without a prohibitive blow-up in the en-
complex derived predicates with an additional device as pa- coding size.
rameter and a conditional flavor, specifying, e.g., whetheror ~ The PSR instances were randomly generated using John
not a circuit-breakewould beaffectedif we were to close Slaney’s randomnet program. Power distribution networks
that device. often have a meshable structure exploited radially: the path
We use four domain versions of PSR in IPC-4. Primar- taken by the power of each source forms a tree whose
ily, these versions differ by the size of the problem instances nodes are switches and whose arcs are electric lines; ter-
encoded. The instance size determined in what languagesminal switches connect the various trees together. Random-
we were able to formulate the domain version. We tried net takes as input the number of sources, a percentage of
to generate instances of size appropriate to evaluate currentfaulty lines, and a range of parameters for controling tree
planners, i.e, we scaled the instances from “push-over for depth, branching, and tree adjacency, whose default values
everybody” to “impossibly hard for current automated plan- are representative of real networks. Randomnet randomly
ners”, were we got our intuitions by running a version of selects a network topology and a set of faulty lines. These
FF enhanced to deal with derived predicates. The largest in- are turned into the various PDDL encodings above by a tool
stances are of the kind of size one typically encounters in called net2pdd?, implemented by Piergiorgio Bertoli and
the real world. More on the instance generation process be- Sylvie Thiébaux. The instances we generated make use of

low. The domain versions are named large, 2. middle randomnet default settings, except for the maximal depth of
3. middle-compiledand 4.small Version 1 has the single  trees which takes a range of values up to twice the default,
formulationadl-derivedpredicatesversion 2 has the formu-  leading to harder problems. The percentage of faulty lines

lations adl-derivedpredicatessimplead|-derivedpredicates ranges from 0.1 t0 0.7.
and strips-derivedpredicatesVersion 3 has the single for-
mulationadl, and version 4 has the single formulatitnips Satellite
The formulation names simply give the language used. Ver-
sion 1 contains the largest instances, versions 2 and 3 con-
tain (the same) medium instances, and version 4 contains
the smallest instances. Tlzall-derivedpredicate$ormu-
lation is inspired from (Bonet & Tl@baux 2003), makes
use of derived predicates as explained above, and of ADL
constructs in the derived predicate, action, and goal def-
initions.  In the simpleadl-derivedpredicateand strips-
derivedpredicateformulations, all ADL constructs (except
conditional effects in theimpleadicase) are compiled away
using automated software (basically, FF’s pre-processor).
The resulting encodings are fully grounded and significantly b
larger than the original, while on the other hand the length of
plans remains completely unaffected. The padéformu-
lation is obtained from thedI-derivedpredicateformula-
tion by compiling derived predicates away using the method
described in (THbaux, Hoffmann, & Nebel 2003). While
there is no increase in the domain size, this compilation
scheme can lead to an exponential increase in plan length
in the worst case. For the PSR instances we generated,
we observed only a polynomial blow up. Nevertheless we
felt that this increase in plan length was too much to make
for a useful direct comparison of data generated ddk-
derivedpredicatess opposed tadl, and we separated the
adl formulation out into domain version 3 as listed above.
The strips domain formulation proved quite a challenge.
No matter how hard we tried, compiling both derived predi-
cates and ADL constucts away led to either completely un-
manageable domain descriptions or completely unmanage-
able plans. We therefore adopted a different fully-grounded
encoding inspired from (Bertobt al. 2002), which is gen-
erated from a description of the problem instance by a tool
performing some of the reasoning devoted to the planner un-
der the other domain versions. As a result, the STRIPS en-  spangomnet and net2pddl are available from the PSR
coding is much simpler and only refers to the positions of penchmark resource web pagétp://csl.anu.edu.au/
the devices and not to the lines, faults, or connections. Also “thiebaux/benchmarks/pds , along with various other tools
we were still only able to formulate comparatively small in-  and papers of interest.

The Satellite domain was introduced in IPC-3 by Derek
Long and Maria Fox (2003). It is motivated by a NASA
space application: a number of satellites has to take images
of a number of spatial phenomena, obeying constraints such
as data storage space and fuel usage. In IPC-3, there were
5 versions of the domain, corresponding to different levels
of the language PDDL2.1Strips Numerig SimpleTimdac-

tion durations are constant§jme (action durations are ex-
pressions in static variables), ambmplex(durationsand
numerics, i.e. the “union” of Numeric and Time).

The adaption of the Satellite domain for IPC-4 was done
y Jorg Hoffmann. All IPC-3 domain versions and exam-
ple instances were re-used, except SimpleTime — like in the
other IPC-4 domains, we didn’t want to introduce an extra
version distinction just for the difference between constant
durations and static durations. On top of the IPC-3 versions,
4 new domain versions were added. The idea was to make
the domain more realistic by additionally introducing time
windows for the sending of the image data to earth, i.e. to
antennas that are visible for satellites only during certain pe-
riods of time — according to Derek Long, the lack of such
time windows was the main shortcoming of the IPC-3 do-
main.

We extended the IPC-3 Time domain version to two
IPC-4 domain versions,Time-timewindowsand Time-
timewindows-compiled We extended the IPC-3 Complex
domain version to the two IPC-4 domain versi@mmplex-
timewindowsand Complex-timewindows-compiledin all
cases, we introduced a new action for the sending of data
to an antenna. An antenna can receive data of only a sin-
gle satellite at a time, an antenna is visible for only subsets
of the satellites for certain time periods, and the sending of
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an image takes time proportional to the size of the image. UMTS

The time windows were modelled using timed initial literals, The UMTSdomain has been developed by Roman Englert
and in the. “-compl_le_d” domain versions, these literals were (2003). It enables the execution of several (data) applica-
compiled into artificial PDDL constructs. None of the do-  tions in mobile terminals. To start an application in a mobile
main versions uses ADL constructs, so of all versions there tgrminal the UMTS call set-up is required. This procedure
is only a single (STRIPS) formulation. takes between a couple of seconds for an interactive game

The instances were generated as follows. Our objectives like chess and 30 seconds for WAP access. Often users start
were to clearly demonstrate the effect of additional time several applications and as a consequence the waiting pe-
windows, and to produce solvable instances only. To accom- riod until the call set-ups are executed takes several minutes.
plish the former, we re-used the IPC-3 instances, so that the Therefore, optimisation of the UMTS call set-up is needed,
only difference between, e.g., Time and Time-timewindows, where each application call is partitioned into modules (En-
lies in the additional time window constructs. To ensure glert 2005). The call set-up via software agents consists of
solvability, we implemented a tool that read the plans pro- eight discrete modules:

duced by one of the IPC-3 participants, and then arranged  terminal resource managemetit): an application start

the time windows so that the input plan was suitable to solve  1q,ys the resource availability check in the mobile ter-
the enriched instance. It is important to note here that the  1;inal and the resource allocation

time windows werenot arranged to exactly meet the times . . ) o
extracted from the IPC-3 plan. Rather, we introduced one ® Connection timing ¢j): connection set-up duration is
time window per each 5 “take-image” actions, made the an- monitored in the bearer anq in case of'fa|lure feedback
tenna visible during that time window for only the respective {0 the terminalis given (within a certain time, e.g. 1 sec.)
5 satellites, and let the image sizes be random values within e agent managemenarf) : requirements of mobile appli-

a certain range where the time window was 5 times as long  cations are transferred to bearer, e.g. Quality of service
as the sending time resulting from the maximum possible  (QoS), required data volume, ...

size. _ _ e agent execution environment mobieen: information
Of course, the above generation process is arranged rather  about mobile application are sent &, e.g. required
arbitrarily, and the resulting instances might be a long way  servers, ...

away from the typical characteristics of the Satellite prob-
lem as it occurs in the real world. While this isn't nice, it

is the best we could do without inside knowledge of the ap-
plication domain, and it has the advantage that the enriched ® radio access bearerrap) bearer allocation of QoS and
instances are solvable, and directly comparable to the IPC-3  in case of failure initiation of resource negotiation with

e radio resource controtrc): allocation of QoS by logical
resources

ones. mobile terminal
In the new domain versions derived from Complex, we e agent execution environment internaéé): data transfer
also introduced utilities for the time window inside which for application set-up from mobile terminal to core net-

an image is sent to earth. For each image, the utility is either ~ work and PDN, and vice versa

the same for all windows, or it decreases monotonically with o pearer serviced: bearer establishment and feedback to
the start time of the window, or it is random within a certain mobile application

interval. Each image was put randomly into one of these . . L
9 b y To start the execution of a mobile application the mod-

classes, and the optimisation requirement is to minimise a . . L
linear combination of makespan, fuel usage, and summed Ul€s are executed in sequential order. If several applications
up negated image utility. are initiated, some modL!Ies Can_be execu_ted in parallel. The

modules obey the following partial execution ordem be-

fore ct, ct beforerrc andam, am beforeaeem aeemand

Settlers rrc beforerab, rab beforeaeej aeeibeforebs with bsbe-

ing final. A detailed documentation on UMTS can be found
TheSettlerddomain was introduced in IPC-3 by Derek Long  in (Holma & Toskala 2000).
and Maria Fox (2003). It makes extensive use of numeric ~ The PDDL2.2 translation of UMTS was established by
variables. These variables carry most of the domain seman- Stefan Edelkamp and Roman Englert. Actions were at-
tics, which is about building up an infrastructure in an unset- tached to execution time, calling for Level 3 temporal plan-
tled area, involving the building of housing, railway tracks, ning. Instances are scaled to setup 1 up to 10 applications,
sawmills, etc. The domain was included into IPC-4 in order a range that is practically motivated. Compared to other
to pose a challenge for the numeric planners — the other do- benchmarks, problem and domain description are compa-
mains mostly do not make much use of numeric variables, rable small to rise a challenge especially for optimal tem-
other than computing the (static) durations of actions. We poral planning approaches. However, real-time is required
used the exact same domain file and example instances adfor practical purposes. Action durations are given in mil-
in IPC-3, except that we removed some universally quanti- liseconds and are selected due to practical constraints. The
fied preconditions to improve accessibility for planners. The entire benchmark set was completed by running a problem
quantifiers ranged over domain constants only so they could generator that performs a realistic perturbation on the action
easily be replaced by conjunctions of atoms. execution times.
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In the form used in IPC-4, the UMTS domain has six
versions. The first three aretempora] a domain ver-
sion with no timing constraintsfemporal-timewindows
a domain version with PDDL2.2 timed initial facts, and
temporal-timewindows-compileda domain version with
a PDDL2.1 wrapper encoding for the timed initial liter-
als. The second domain version d$igw-temporal flaw-
temporal-timewindows and flaw-temporal-timewindows-
compiled includes an additional but practical motivatev
action that can affect plan finding, since it offers a shortcut
to a relaxed plan not needed for a valid one, and, in order to
determine that this action is not required, negative interac-
tions have to be computed.

All domain versions have one formulation, namstsips-
fluents-temporalwhere numerical fluents, but - except typ-
ing - no ADL constructs are used. In all instances, the
plan objective is to minimisenakespan Thetemporaland
temporal-timewindowproblem specifications were tested
with the MIPS planner (Edelkamp 2004).

Besides action duration, the domain encodes scheduling
types of resources, consuming some amount at action ini-
tialisation time and releasing the same amount at action end-

ing time. Renewable global resources have not been used

in planning benchmarks before, and the good news are that
PDDL2.2 is capable of expressing them. In fact we used
a similar encoding to the one that we found flwb- and
Flow-Shopproblems. As one feature, actions are defined
to temporarily produce rather than to temporarily consume
resources. As PDDL2.2 has no way of stating such re-
source constraints explicitly, planners that want to exploit
that knowledge have to look for a certain patternsirof
creaseédecreasesffects to recognise them.

In UMTS, two actions can both check and update the
value of some resources (eltas-mobile-cplat their start-
ing (resp. ending) time points as far as the start (resp. end-
ing) events are separated bytime steps, where is min-
imum slack time required between two dependent events.
We first thought about modelling renewable resources with
anover allconstruct. Butin this case, the invariant condition
of the action has to check, what thestartevent did change.
We decided that this is not the best choice for a proper du-
rative action. Consequently, the durative actions require that
there is enough of the resource availabédoreadding the
amount used.

The domain assumes that the mobile applications run on
one mobile terminal. However, they can also be distributed
on to several mobile terminals. Additionally, the resource
modeling of the UMTS network is constrained to the most
important parameters (in total 15). In real networks several
hundred parameters are applied.

Concluding Remarks

In a field of research about general reasoning mechanisms,
such as Al planning, it is essential to have appropriate
benchmarks — benchmarks that reflect possible applications
of the developed technology, and that help drive research
into new and fruitful directions. In the development of the
benchmark domains and instances for IPC-4, the authors
have invested significant effort into creating such a set of
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appropriate benchmarks for Al planning. The domains are
mostly still far away from “real-world” problems, and we
are aware that, e.g., fully grounded STRIPS encodings aren’t
nice and pose a serious problem for systems that don’t use
the standard pre-processes. Nevertheless we believe that the
IPC-4 domains constitute a significant step into the right di-
rection, and that they form an interesting range of bench-
marks. We hope they will become standard benchmarks in
the coming years.

Acknowledgements. We would like to thank the com-
petitors for their detailed comments about found bugs in our
domains, and we would like to thank Malte Helmert for var-
ious useful tools that helped remove some of these bugs.
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Abstract

This document describes Macro-FF, an adaptive planning
system developed on top of FF version 2.3. The original FF
is a fully automatic planner that uses a heuristic search ap-
proach. In addition, Macro-FF can automatically learn and
use macro-actions with the goal of reducing the number of
expanded nodes in the search. Macro-FF also includes im-
plementation enhancements for reducing space and CPU time
requirements that could become performance bottlenecks in
some problems.

Introduction

Macro-FF is an extension of the automatic planner FF ver-
sion 2.3 (Hoffmann & Nebel 2001). We developed a first
version of Macro-FF as a tool for exploring how macro-
actions can reduce the complexity of automated planning
(Botea, Miiller, & Schaeffer 2004). Further extensions
have been implemented to prepare Macro-FF for participat-
ing in the fourth international planning competition (IPC4).
Macro-FF is designed for classical planning and can use
both STRIPS and ADL domain formulations. The plans that
Macro-FF produces are not guaranteed to be optimal. The
system has no capabilities for temporal and metric planning,
and implements no support for derived predicates and timed
initial literals.

This extended abstract summarizes the architecture of
Macro-FF. The structure of our presentation is the follow-
ing: First, we provide a brief description of FF, focusing on
the parts that are relevant for our work. Next, we describe
the main contributions that we have added to the original
FF. The extensions that we present mainly go into two di-
rections:

e Speeding up search with macro-operators. A macro-
operator is an ordered sequence of operators together with
a variable mapping showing how the variable sets of op-
erators overlap. The intuition for using macro-actions is
that several actions can often work in a sequence to ac-
complish a local task (e.g., first take the key out of the
pocket, next unlock the door). Identifying and exploit-
ing such sequences have a significant potential to reduce
the overall planning effort. Macro-FF can automatically

Copyright (© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.
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learn and use macro-actions with the goal of reducing the
number of expanded nodes in the search.

e Implementation enhancements for reducing memory and
CPU time requirements. The number of expanded nodes
and the solution quality are not affected by changes in
this category. However, when the memory or CPU time
necessary to solve a problem are larger than the available
resources, this kind of improvements can make the differ-
ence between failure and success in solving a problem.

Overview of FF

FF is a state-of-the-art fully automatic planner that uses a
heuristic search approach. The basic version of FF, which
we started from, is designed for classical planning. Spe-
cialized versions of FF have capabilities for planning with
numerical state variables (Metric-FF) and planning with in-
complete information (Conformant-FF).

FF uses a preprocessing phase that includes the gener-
ation of all facts (i.e., instantiated predicates) and actions
(i.e., instantiated operators) that could possibly be used in
the current problem instance. These elements, which are ex-
tensively used during the search, become available at little
runtime cost.

FF automatically computes a heuristic state evaluator that
guides the search process. Given a state, the distance to a
goal state is approximated by the length of a relaxed plan
that achieves the goal conditions starting from the current
state. This plan is computed in a relaxed GRAPHPLAN
framework, where the delete effects of actions are ignored.

The planner implements two search algorithms. Enforced
hill climbing (EHC) is a fast but incomplete algorithm that
greedily searches for a goal state in the problem space. EHC
starts from the initial state and performs a local search using
a breadth-first strategy. When a state with a better evaluation
than the starting state is found, the current local search stops
and a new local search is launched starting from the newly
found state.

In EHC, the GRAPHPLAN computation for a state is
used not only to find a heuristic evaluation, but also to fur-
ther prune the search space through a mechanism called
helpful action pruning. When a state is expanded, only
moves that occur in the relaxed plan and belong to level
0 of the GRAPHPLAN (i.e., can be applied to the current
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state) are considered. With no helpful action pruning, EHC
is complete in undirected search spaces.

EHC stops when either a goal state is found, or the open
list associated with the current local search is empty. When
the second alternative occurs (i.e., EHC fails because of its
incompleteness), a complete best-first search (BFS) algo-
rithm is launched to find a path to a goal state.

Learning and Using Macro-Operators

When treated as single moves, macro-actions have the po-
tential of influencing the planning process in two important
ways. First, macros can change the search space, adding to
a node successor list states that would normally be achieved
in several steps. Intermediate states in the macro sequence
do not have to be evaluated, reducing the search costs con-
siderably. In effect, the maximal depth of a search could
be reduced for the price of slightly increasing the branching
factor. Second, macros can improve the heuristic evalua-
tion of states. As shown before, FF computes this heuristic
by solving a relaxed planning problem (i.e., the delete ef-
fects of actions are ignored) in a GRAPHPLAN framework.
Consider two normal actions that occur in a sequence in a
relaxed plan. It is not guaranteed that this chaining trans-
lates to a valid action sequence in the real world (e.g., when
the first action has a delete effect that is a precondition for
the second action). Consider now the case when two ac-
tions compose a macro, so that the relaxed plan contains that
macro rather than two separate actions. A relaxed macro can
always be translated to its correspondent in the real world,
as any other action does.

Learning Phase

Macro-FF learns a set of macros through a training phase
that uses several sample problems of a domain. Each train-
ing problem is first solved with no macros in use. The found
plan P is represented as a directed solution graph, where
each node represents a plan action, and edges show the rela-
tive order and distance between two actions in the solution.
If action a; occurs before action ay in P, then a weighted
edge e = (a1, az) is added to the graph. The weight is the
distance between a; and a9 in the solution.

We define a macro-action as a linear sequence in the so-
lution graph, with the corresponding parameter mapping.
To reduce the training effort, our implementation consid-
ers only sequences of two consecutive actions as possi-
ble macros (i.e., only pairs of nodes linked by edges with
weight 1).

The macro-actions are mapped to macro-operators by re-
placing the instantiated parameters with generic variables.
Macro-operators have weights (initially set to 1.0) and are
stored in a global list ordered by their weights.

For each macro-operator m, the current training problem
is re-solved using m. To measure the usefulness of m, we
compare the effort to solve the problem with macro m in use
to the initial solving effort. We evaluate the effort to solve a
problem as the total number of expanded nodes. The weight
update formula for m uses the difference between N (the
effort for solving the problem with no macros in use) and
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N, (the effort when macro m is used). A sigmoid function
maps the difference into the range (—1, 1). The update value
further contains the initial solution length as a multiplicative
factor, which measures how hard the current problem is. The
harder the problem, the larger this weight update should be.
After the training phase completes, the best macros can be
used in the solving phase.

Solving Phase

Current Implementation. For [PC4, we store the macros
using a compact representation. This includes the ids of the
operators that compose the macro and the variable mapping,
but ignores the precondition and effect formulas. In the solv-
ing mode, the compact patterns of the best macros are used
for online checking if two instantiated actions compose a
macro. The current implementation uses macros to change
the search space (as shown next), but does not affect the
computation of the heuristic state evaluation. Improving the
heuristic state evaluation with macros is an important topic
for future work.

To explore the search space more efficiently, we exploit
the relaxed plan that the system computes for the current
state to be expanded. Our idea is to try to execute parts of
the relaxed plan in the real world, hoping to move toward a
goal state faster. We examine the relaxed plan to find action
sequences that match a macro pattern. Each time when such
a sequence is identified, we check if this could be executed
in the real world, starting from the current state. This veri-
fication is fast, as we do not compute the evaluation of the
states along the execution path. If executing a macro-action
succeeds, we consider the resulting state as a successor of
the current state and add it to the open queue.

In enforced hill climbing, we order these macro succes-
sors before the regular successors of a state. In effect, macro
successors are expanded earlier than regular successors. In
addition, our code includes an ordering scheme for normal
successors, which we had developed before using macro
successors. In the current implementation, this still might
be useful in cases when a macro is not part of the relaxed
plan, but could occur in the real world. We order the normal
successors giving priority to moves that continue as a macro
sequence the last action on the current branch (i.e., the ac-
tion that led to the currently expanded state .S). We split
the normal successors of state S into two subsets Succy (S)
and Succo(S). Assume ag is the action that we applied to
obtain S, and ag- is the action that we apply from S to ob-
tain a successor S’. If pair (ag,as/) matches the pattern
of a learned macro operator, then S’ € Succy(S). Other-
wise, S’ € Succy(S). Elements from Succ (S) are ordered
before elements from Succy(S). Inside such a set, an ad-
ditional move ordering scheme, preserved from the original
FF, is applied.

In best-first search, macros act as a method for search
depth control. In the original implementation, when a node
is expanded, all its normal successors are added to the open
list, except for states that have been visited before (a trans-
position table is used to identify duplicates). In addition to
this, our new implementation explores branches that com-
pose a macro more deeply. States are further expanded on
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the branches that match a macro pattern, and the resulting
states are added to the open list earlier than in the origi-
nal FF.

Alternative Approach. Another possible way of using
macro-operators is to add them as normal single-step opera-
tors to the initial domain formulation, as described in (Botea,
Miiller, & Schaeffer 2004). In this way, macro-actions are
naturally used in both exploring the search space (i.e., as
possible moves when nodes are expanded) and computing
the heuristic state evaluation in the relaxed GRAPHPLAN
framework, with no need to change the original code of FF.
In effect, the number of expanded nodes can be reduced for
the price of increased preprocessing time and cost per node
at run-time.

This approach was hard to use in IPC4, as the macro-
operators added to the domain formulation have to have
complete PDDL definitions, including precondition and ef-
fect formulas. Expressing these formulas starting from the
contained operators is easy in STRIPS, but hard in more
complex PDDL subsets such as ADL, where the precondi-
tions and the effects of the contained operators can interact
in a very complex way. However, for IPC4, we used the
ADL formulation for several domains that were available
both in ADL and STRIPS. The reason is that the STRIPS
formulation of these domains have a separate operator file
for each problem. This makes our learning algorithm hard
to apply, as several training problems are necessary for a
given domain definition.

Implementation Enhancements

The enhancements described in this section have the goal
of reducing the space and CPU requirements of the plan-
ner, and do not affect the number of expanded nodes and the
quality of found plans. We describe two enhancements, one
for speeding-up the best-first search and one for reducing the
space needs for the preprocessing.

The best-first search (BFS) algorithm uses an open list of
nodes that have been generated but not expanded yet. The
elements in this list are stored in increasing order according
to their heuristic evaluation, so that the next node chosen for
expansion is the most promising in the list. FF version 2.3
implements the open queue as a linear linked list. A node
insertion requires a linear traversal of the list, so that the or-
dering of the list is preserved. Experiments with some of the
competition problems have shown that this linear traversal
can be a serious bottleneck for best-first search. We changed
the original linked list of nodes to a linked list of buckets,
where each bucket is a linked list of nodes having the same
heuristic value. The insertion of a node requires finding the
appropriate bucket for that node, which takes time linear in
the number of different heuristic values in the open queue
plus a constant time for inserting the node at the end of the
bucket (this preserves the existing tie-breaking rule).

FF version 2.3 is optimized for speed by using preprocess-
ing to a large extent. Some of the data structures used for
holding the preprocessing information grow exponentially
with the problem complexity, so that this method does not
scale to more complex problems. We took an initial step to
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address this problem by replacing a large lookup table by a
different data structure. The lookup table was used for hold-
ing instantiated facts that occur in the initial state. The new
implementation uses a balanced binary tree for logarithmic
lookup time.
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Abstract

The Optiplan planning system combines the ideas pre-
sented by Vosseet al. (1999) and Kautz and Sel-
man (1998). It unifies integer programming with graph-
based planning and computes optimal parallel length
plans for STRIPS based planning problems. In addition,
given a feasible parallel length, Optiplan can be used to
minimize the number of actions, minimize action cost,
or optimize any other objective that can be expressed as
a linear function.

OptiPlan

Optiplan is a domain independent planner that, like ILP-
PLAN (Kautz & Walser 1999) and the “state change model”
(Vosseret al. 1999), uses integer programming (IP) to solve
STRIPS planning problems. The architecture of Optiplan is
very similar to that of Blackbox (Kautz & Selman 1999) and
GP-CSP (Do & Kambhampati 2001), but instead of unify-
ing satisfiability or CSP with graph based planning, Optiplan
uses integer programming. Like Blackbox and GP-CSP, Op-
tiplan works in two phases. In the first phase the planning
graph is build and transformed into an IP, then in the second
phase the IP is solved using the commercial solver CPLEX
(ILO 2002). The IP formulation is based on the state change
formulation (Vosseret al. 1999), however, a few changes
have been added that “strengthen” the original formulation
and make it more general at the same time.

A practical difference between the state change model and
Optiplan is that the former takes as input all ground ac-
tions and fluents over all time steps, while the latter takes
as input just those actions and fluents that are instantiated
by Graphplan (Blum & Furst 1995). The use of a plan-
ning graph has a significant effect on the size of the final
encoding, independent of which combinatorial transforma-
tion method (IP, SAT, or CSP) is used. For example, Kautz
and Selman (1999) pointed out that Blackbox’s success over
Satplan was mainly explained by Graphplan’s ability to pro-
duce better, more refined, propositional structures than Sat-
plan. Another, although minor, practical difference between
Optiplan and the state change model is that Optiplan reads
in pddl files, allowing it to be directly compared to other
STRIPS based planners.

In order to present the improved state change formulation
that is used in Optiplan we introduce the following sets and
variables: (The reader familiar with the work by Vossatn
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al. (1999) may want to skim through the formulation of the
model and note that the variable§**, for all f € F,i €
1,...,t have been deleted and the varia § forall f €
F.i e 1,....t have been added to the original formulation.):
F, set offluents the set of all instantiated propositions;
A, set ofactions the set of all instantiated operators;

I C F, set of fluents that are true in the initial state;

G C F, set of fluents that must be true in the goal state;
prey C AVf € F, set of actions that have fluelfitas
precondition;

addy C A,Vf € F, set of actions that have fluefitas
add effect;

dely C AVf € F, set of actions that have flueitas
delete effect;

The state change formulation defines variables for each
step: in the planning graph. There are variables for the ac-
tions and there are variables for the possible state changes
a fluent can make. Forall € A,i € 1,...,t we have the
action variables

{

The “no-op” actions are not included in thg, ¢ variables
but are represented separately by the state change variable
peintein - For all f € F,i € 1,...,t we have the state
change variables

1 ifactiona is executed in period
0 otherwise

a,i —

maintain __ | 1 iffluent f is propagated in period
Lfi ~ 1 0 otherwise
1 ifactiona is executed in period
I}Tf“dd = such that € prey Na ¢ dely,
’ 0 otherwise
1 ifactiona is executed in period
x;_did = suchthatu ¢ pres Na € addy,
' 0 otherwise
1 ifactiona is executed in period
a:jlcell = such that ¢ pres Na € dely,
0 otherwise
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In summary: z77'¢***" = 1 if the truth value of a flu-
ent is propagatedz:pm“dd 1 if an action is executed that

requires a fluent and does not deleterf]tdd = 1ifan ac-
tion is executed that does not require a fluent and adds it;
andx?el = 1if an action is executed that does not require a
fluent and deletes it.

There are a few differences with the original state change
formulation and the formulation in Optiplan. Optiplan in-
troduces ther“ variables in order to deal with actions
that delete fluents without requiring them as preconditions.
Many planning domains in the International Planning Com-
petition 2004 have such actions, making the original state
change formulation ineffective. In addition, the new formu-
lation has substituted out aif""‘”d” variables by the expres-

SION Y e pre s udet; Yasi- The updated formulation is given
by:

DD Vai @)
a€A €T
st afy =1vfel 2)
g =0vf el ®3)
234l 4 gipaintain . gpreadd > | @
S Yo = 2§y (5)
a€addy /pres
Ya,i > z?%d (6)
dd
S ezl @
a€Epreys/dely
dd
Ya,i < ivzf)gm (8)
> ez ©)
a€dely /prey
Yai < 24 (10)
x(]lcdld_’_xmaznfazn_’_ Jd‘,ezl—’_ Z Yai <1
a€pregUdel ¢
(11)
I?:r’ieadd+ }n;qintain+ ?e7l+ Z Ya.i < 1
a€preyUdel s
(12)
I}Zeadd +x;n;1mfmn 4 Z Yai <
a€pregUdel ¢
x?rzeadd + x?dzd . + xmazntuzn (13)
?rleadd ?dzd7 Elcell7x}n;1mtmn c {O 1} (14)
Yai € {0,1} (15)

Where constraints (2), and (3) represent the initial state
constraints, and (4) represent the goal state constraints. For
all f € F,i € 1,...,t, constraints (5) to (10) represent the
logical interpretations between the action and state change
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variables, and for alf € F,i € 1, ..., t constraints (11) and
(12) make sure that fluents can only be propagated at period
if and only if there is no action in periathat adds or deletes
the fluent. For allf € F,i € 1,...,t, constraints (13) de-
scribe the backward chaining requirements. Constraints (14)
and (15) are the binary constraints for the state change and
action variables respectively. Since the constraints guarantee
plan feasibility, no objective function is required, however,
Optiplan uses an objective that minimizes the number of ac-
tions taken to guide the search.

Optiplan shows an increased performance over the origi-
nal state change encoding, but it remains significantly slower
than, for example, Blackbox(Chaff). Table 1 shows a com-
parison between the original state change formulation and
Optiplan on a set of problems that we could test both en-
codings on. All tests were run on a Pentium 2.67 GHz with
1.00 GB of RAM and the IP encodings were solved using
CPLEX 8.1. For all problems Optiplan creates smaller en-
codings than the original state change formulation, and in all
but two instances (the two rocket problems) Optiplan’s for-
mulation is solved at least as fast as the original state change
formulation.

Often times only a few nodes are explored in the branch-
and-bound tree, this indicates that the LP relaxation provides
a good approximation to the convex hull of integer solutions.
Still, however, our IP approaches are easily outperformed
by planners like Blackbox(Chaff). Possible reasons for this
performance gap is that the CPLEX'’s integer programming
solver is not specialized in solving pure 0-1 programming
problems and because many “expensive” matrix operations
are required when solving the LP relaxation. When these
shortcomings are resolved, for example, through the use of
special purpose algorithms like branch-and-cut, decompo-
sition, or column generation, Optiplan and IP approaches
in general could become competitive with other successful
planners.
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State change model Optiplan

Problem #Var. #Cons. #Nodes Time #Var. #Cons. #Nodes Time
bw-sussman 196 347 0 0.01 105 142 0 0.01
bw-12step 1721 3163 15 453 868 1040 4 1.58
bw-large-a 2729 5106 0 5.04 1800 2104 0 3.91
bw-large-b 6502 12224 25 932.26 4780 5466 9 236.45
att-log0 33 41 0 0.01 6 8 0 0.01
att-logl 151 188 0 0.01 49 71 0 0.01
att-log2 330 420 14 0.05 130 193 0 0.01
att-log3 2334 3785 0 0.26 250 455 0 0.06
att-log4 2330 3775 42 0.59 449 850 0 0.12
att-loga 3146 5091 3583 366.44 1671 3258 80 29.84
rocket-a 1615 2694 169 8.80 1127 2365 49 12.38
rocket-b 1696 2829 122 8.27 1187 2516 27 11.58
log-easy 1521 2254 32 0.86 555 1088 0 0.14
log-a 3933 6306 174  48.36 1671 3258 80 29.74
log-b 4684 7202 1797 391.75 1962 3830 41  40.67
log-c 5886 9324 1378 946.23 2691 5370 114 183.96

Table 1: Comparing the original state change formulation with Optiplan. #Var. and #Cons. give the number of variables an
constraints after CPLEX'’s presolve. #Nodes give the number of nodes that were explored during branch-and-bound befo
finding the first feasible solution.
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Abstract Overview

In this paper we introduce a new planning system FAP based ~ FAP is a forward planner in a state space which combines
on the heuristic search. For the heuristic calculation, FAP heuristic search planning techniques with a "state grouping”
combines the techniques used in abstraction and heuristic ~ approach. As HSP (0), FF (0), etc. state’s heurisicom-
planning. FAP calculates his heuristic by projecting the plan-  puted from a solution of a relaxed problem. The relaxed
ning problem in a relaxed problem where the delete lists of  problent ignores action’s delete list and is solved through
the actions are ]gnored and the aCt|0n-S a!’e grouped In se- a plannlng graph S|m||ar to the Graphplan’s plannlng graph
qule”fets S‘Cﬁord.'”tg t(t) their dom.'ter of apﬂ'cat'O“NFBAP t’sses thﬁ (0). The state grouping approach constitutes the main orig-
carcuiatec Neunstic to guide Its search on a N-best-Search —jnaivy of this work. It aims at reducing state search space
I;glstc_ grg;)rlgﬁ ;L%ogitﬁ\_rg“vr;rg% ';g%rcit%r:g_nat'on of the N by grouping states, and is done through the generation of
meta-actions "sequences” rather than building states shapes
as in ShaPer (0) or states abstractions as in some hierarchical
Introduction planni_ng systems like ALPINE (0). _
o During the search, FAP generates new actions (or meta-
The heuristic search has enhanced the performance of plan-actions) corresponding to the actions "sequence” called an-
ning algorithms. Planners like HSP (0) HSPr (0) and FF ticipations. These actions "sequence” are used like the other
(0) has shown the ability of solving large planning problems  gnes in the planning graph, in the states search space and can
according to the classical previous planners. The heuristic pelong to other actions "sequence”. In this way, all states are
used buy the most of the current planners is based on the not considered in the search space.
idea of McDermott (0) as well as Bonet et al. (0), which A candidate actions to the sequence generation are
propose the relaxation of the problem in a simpler problem njjed out from the planning graph. The actions selection
by ignoring the delete lists of the actions. Also the heuris- gy ring the extraction of the relaxed solution is essential be-
tic idea was early used in the hierarchical planning in aking  cayse they do not only participate to the heuristic calculation
of relaxing the problem buy projecting itin an abstract prob- 1t aiso to the state grouping. Currently, FAP extracts the
lem where the solution can be found faster (see planners like rg|axed solution in regression (from the last level) and uses
NOAH (0), NONLIN (0)). The abstraction used in hierarchi-  some |ocal criteria to select actions in the planning graph.
cal planning was often based on the actions or states group- - e main search algorithm used in FAP is an extension
ing. In this paper we introduce a new planning system FAP ¢ y,o N_Best heuristic Search algorithm NBS (proposed in
based on the heuristic search. For the heuristic calculation, (0)) called N-Best heuristic Hill-Climbing Search algorithm
FAP combines the techniques used in abstraction and heuris—NBHCS This algorithm is complete and can be viewed as a
tic planning. FAP calculates the heuristic by projecting the yin of Hill-Climbing algorithm with a backtracking. There-
planning problem in a relaxed problem where the delete lists ¢, .o FAP considers all applicable actions (not only the antic-
of the actions are ignored and the actions are grouped in se- ipations) to be complete
guences according to their order of application. FAP uses F h state. FAP ) lies the followi tens:
the calculated heuristic to guide its search on a N-Best Hill- or each state, appiies the following steps.
Climbing heuristic Search algorithm which is a combina- 1. Relaxed planning graph building (similar to FF),
tion of the N-Best heuristic Search and Hill-Climbing algo-
rithms. In the rest O_f this paper we present an overview of The heuristic corresponds to an estimation of the distance in
our work. We explain the sequences meta-actions calcula- nymber of actions between the initial state and the goal.
tion. We present the generation of the sequences to finish 25 STRIPS, a planning probler® = (0, I, G) is define by

with the main search algorithm. a set of operator® which change the world state, an initial state

I and a goal= to satisfy. The operators of the considered relaxed
Copyright © 2004, American Association for Artificial Intelli- problemP’ = (O’, I, G) correspond to the operators of the prob-
gence (www.aaai.org). All rights reserved. lem P without the delete list.
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2. Relaxed solution extraction which defines the candidate  The local criteria describe some selection rules between

actions and the heuristic, actions belonging to two successive action’s levels. For each
3. Sequence actions generation (in progression and then ing02lsg at a leveli, an actiona is chosen at the level - 1
re guen 9 (in-prog if 1) g € add(a) and 2) for all actiong’ in the leveli such
gression). : P "
. ] ] asg € pre(f), a authorize  anda minimize thedifficulty
In the first part of this paper, the meta-action "sequence” of (o, 8) whith dif ficulty(a) = 5. level(p). From
is briefly presented . Then, we expose the selection of rele- pepre(a)

vant actions corresponding to the relaxed solution, the se- this selection, only actions which maximize the number of
guence actions generation and the state search algorithmgoals of the level are chosen so as all level goals belong to

NBHCS an add list of these actions.
_ The meta-actions "sequences” are generated from a par-
Meta-action "Sequence” tial planning graph containing only the extracted actions. A
A ground actiona in STRIPS is described by the follow- first generation is done in forward from the actions in the
ing lists: paramg) is the list of action’s parameters, pg( level 0 in the following way: if all actionsa; in level 0

is the list of preconditions which must hold for action’s ap- '€ many to mang-independerthen generate the sequence
plication, add¢) and del¢) lists are respectively the listof & Then for all generated sequencesn a leveli and
addition and the list of deletion of the action. all actionsg3 in the leveli + 1, only the usefulsequences
D(Ii, () are computed. The process stops when the last level

Definition 1 The meta-action "sequences(a,az) is de- is reached or if any sequences can be generated at the current

fined by: level c.
e param@>(ay,a0))=(ay,s) In the second generation, only thisefulsequences are
o pre(>(aq, as))= pre(ar) U (pre(es) \ add()) computed by pairs of successive levels in backward from
o add(>(an,a2))= [add(a)U (addi) \ del(a))] \ pre( helastlevel to the level
P o, 2)) NBHCS algorith
o del(>(a1,02))= [del(az) U (del() \ add())] N pre( algonthm
>(ai, az)) The search algorithm used in FAP is an instantiation of the

. . N-Best heuristic Search Algorithm (NBS). The NBS algo-
Moreover, Fap used the following properties on the meta- rithm is at a time a functional extension and a simpler im-

action "sequence”: plementation of the First Best Search algorithm. In many
planning problems, a state has a big nhumber of successors,
Definition 2 Two ground actionsa; and as are S- which decreases the planning performance if all of them are
independeniff pre(> (a1, as))= pre(>(as, a1)), addt>(aq, visited. The idea of the NBS algorithm is to generate a lim-
as))=add(>(asg, ay)) and del¢(aq, asz))=del(>(asg, a)). ited number N of successors at a time instead of generating
all of them, then to expand the graph for the next N succes-
Definition 3 A sequence> is correctiff it exists a states sors if no solution found and so on. Moreover, because the
reachable from the initial state such asis applicable ins. graph can be expanded every time the solution is missed up
to containing all the successors, this algorithm is complete.
Relevant actions extraction and sequences In the figure 1, the NBS algorithm is presented. The
generation search process could be defined as a quadruplg (S.,S;)

i ) where S is the current best state, G is the gdal,is the set
For each state FAP builds a relaxed planning to calculate of operators applicable to.%ind S is the initial state. Any
planning graph in regression. The extraction process starts gre memorized and this state is kept in a list of all completely
from the goals in the last level and go back to the firstlével  expanded states named Closed. A statésDartially ex-

from the previous level for sequence building according to or g part of its successor states are kept, all of these states
some local criteria. The preconditions of the chosen actions gre included in a list of states called Open.

are then added to the goal set and then the process goes back oyr N-Best heuristic Hill-Climbing Search algorithm

to the previous level until the first level is reached. is an NBS algorithm with a specification of the gener-
The local criteria use the following relation of authoriza-  zte pestsuccessors function (see figure 2). As in Hill-
tion: Climbing search algorithm, the process of generating suc-
cessors stops when a best successor is found. Let remark
Definition 4 An action a; authorizesay iff del(a;) N that in FAP the order in which the actions are memorized in
pre(az) =9 the sefl’. is very important because it defines the expansion
strategy. The memorized order is: the generated sequences,
Definition 5 A sequence-(«;, as) where levelf;)=4 and the helpful actions (like the ones used in FF) and then the
level(z)=1i + 1 is consideredusefulat a leveli iff it exists others, of course all these actions are applicable in the cur-
an atomp such as level)=i andp € add(ay) N pre(as). rent state. Therefore, in a first stage the sequences are ap-
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plied, in a second the helpful and then the other actions. By

this way, FAP is complete.

Algorithm 1 The N-Best heuristic Search Algorithm
Open<— {(S“Fo)},
Closed— g;
while Open+# @ do
(S..I'.)=getstatewith_min_f(Open);
generatebestsuccessors(NJ'.);
if bestsuccessors($nN G # @ then
return S;;
end if
Open« Openu bestsuccessors($,
if I'. =2 then
Open«— Open\ {(S..T.)};
Closed« ClosedU S,;
else
updatel’(S.,I".);
end if
end while
return Failure;

Algorithm 2 generateébestsuccessors strategy

Successors- &,
repeat
~v « elementT’,);
S« apply(S.7);
Successors- Successors {S};
until f(S) < (S.)
return Successors;

Conclusion

This paper shows a new heuristic search planner based on

the problem relaxation by action grouping. In the palnnign-

graph, the generation of sequences "actions group” and their
application can be more informative as a heuristic guide than
the separated actions application. The main search algo-
rithm can recuperate the time that the computation of se-
guences takes. Therefore, the main search algorithm can
use a shorter path to achieve the goal with sequences than

with direct heuristics. The main stake is to build the best

sequences by choosing the actions as possible in the order
of their applications to access the result as fast as possible.

This will be our future work where we aim to refine the lo-
cal criteria in a way to obtain optimal sequences, and by
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consequence to reduce the search time and the search space.

Another extension to FAP will be the introduction of actions
with conditional effects, where we thought the local criteria

refinement would be harder to generate relevant sequences

instead of generation a sequence for each possibility.
The main search algorithm of FAP is the N-Best-Hill-
Climbing which is complete and in which we can go back to

revisit previous actions when needed. But our experiments
have showed that the result is often achieved in the first pass.
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Abstract Marvin can exploit the potential for concurrency in solu-
o o o tion plans by considering, at each choice point, all of the
Marvin is a forward-chaining heuristic-search planner. actions that could be applied at the current time painbé-
The basic search strategy used is similar to FF's en- fore considering the actions that could be applied at the next

forced hill-climbing with helpful actions (Hoffmann & : : ) - LI
Nebel 2001); Marvin extends this strategy, adding extra time point (for non-temporal domains this is simply- 1).

features to the search and preprocessing steps to infer This approach Increases th(_a branc.hmg factor and_could thus
information from the domain. become very expensive during periods of exhaustive search;
hence, during such periods the concurrency reasoning is sus-
pended until the plateau is escaped. The steps to escape a
Introduction to Marvin plateau are then post-processed to reintroduce concurrency

o . o where possible.
Marvin is a forward-chaining domain-independent planner P

that uses a relaxed-plan heuristic to guide its search. The .
name Marvin standsgor Macro-Actiong from Reduced Ver- Instance Reduction

sions of the INstance and gives some insight into the way Before attempting to solve the problem instance with which

in which the planner works: it attempts to create a reduced itis presented, Marvin creates a smaller instance of the prob-
instance of the problem with which it is presented, solve lem. This approach was motivated by the observation that
this smaller instance, and then use the solution to assist with small instances can be solved quickly and their solutions of-

solving the original problem. ten contain action sequences similar to those in solutions for
larger problem instances. Any knowledge that can be ob-
Basic Search Strategy tained inexpensively by solving a smaller instance will be

. L . valuable in solving the larger instance that was given to the
The basic search used is similar to FF's enforced hill- planner. 9 9 9

climbing with helpful actions (Hoffmann & Nebel 2001); Smaller instances are created using symmetry and almost-
Marvin extends this strategy, adding extra features to the symmetry. Two objects are symmetric if, and only if, they

search and preprocessing steps to infer information from the gp e the same predicates in the initial and goal states: this is

domain. This section details the modifications made to the a yefinition of symmetry used previously by STAN version
search strategy. _ 3 (Fox & Long 1999). In many domains this reduction does
_ When plateaux are encountered Marvin resorts to best- ot giscard sufficient entities to create a significantly smaller
first search as opposed to breadth-first search—in prac- proplem, hence further pruning is desirable; this is achieved
tise this improves its performance but may increase the through the use of almost-symmetry. In this context two
makespan of the plan. _ o objects are almost symmetric if, and only if, the predicates
_To reduce the overheads incurred by memoising already- defining them in the initial and goal state are of the same
visited states no record is kept of visited states if search type and they differ on|y in groundings of one or more ar-
is progressing normally; however, should a plateau be en'(guments of a the predicates. For example, in the problem

countered, the differences between states on the plateau anthelow (where all predicates involving packagel and pack-
the state at the start of the plateau are memoised, and stategge2 are shown):

whose difference has already been memoised are pruned. N

To prune action choices Marvin constructs groups of sym-  Initial State
metric objects (objects with identical properties), extracts at packagel locl
one exemplar from each group and then prunes actions at package2 loc2
which involve any entities which are not the exemplar for
their group; for example, in the gripper domain, if two balls
are symmetrical in a given state it will only consider apply- ~ Goal State
ing the pickup action to one of them. at packagel loc3
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at package2 loc4

the two packages are ‘almost-symmetric’: they only differ
by one binding in the initial state (the location they are at)
and one in the goal state (their destination).

Using this definition of almost-symmetry the symmetry in
the solution plan for these two entities will be captured, as
well as strict symmetry in the problem: if two objects share
the same predicates in the initial state (even if the ground-
ings of these predicates differ) it is likely that the same, or
a similar, plan can be used to achieve the required goals for
both objects.

When the extraction of groups of related objects is com-
pleted a new smaller problem instance is created by taking
one exemplar from each related group and including only
the predicates whose entities are wholly contained within
this set of exemplars; the smaller instance is then solved, us-
ing the search algorithm described in the previous section
to generate a solution plan.

The plan generated to solve the smaller instance is pro-
cessed to produce macro-actions. Partial-order lifting is used
to extract independent threads of execution in the plan; af-
ter extraction independent threads are made into individual
macro-actions and are added to the list of actions to be used
in planning to solve the original instance. Whilst adding
actions does increase the branching factor the additional ac-

tions often assist in the planning process as they encapsulate

a previously-successful strategy for solving a similar prob-
lem.

It should be noted that for some domains—for example,
freecell—the reduced problem is unsolvable; in such situ-
ations it is usually the case that the problem is proven un-
solvable very quickly: the goals do not appear in the re-
laxed planning graph. For situations in which the goals are
present in the relaxed planning graph it is necessary to in-

When solving the reduced instance any plateau-escaping
macro-actions devised are stored for use when later solving
the original problem; this has the useful side-effect of dis-
covering efficacious escape macros with less computational
effort—it is less computationally expensive to perform the
plateau-escaping search on the reduced instance of the prob-
lem. Furthermore, since the reduced instance is derived from
the original problem instance, it is often the case that the
heuristic breaks down when solving the reduced instance in
some of the places it breaks down when solving the original
problem instance.

As with the macro-actions created from the reduced ver-
sion of the instance the plateau-escaping macro-actions have
a partial order lifted out, the aim of which is to improve
the concurrency within them, reducing the makespan. Once
this processing has taken place the segment of plan which
escaped the plateau is replaced with the macro-action: the
macro-action may exploit concurrency which the original
plan segment did not.

Transformational Operators

Transformation operators are those operators that transform
a certain property of an object but leave other objects un-

changed; for example, the action move in the driverlog do-

main:

pre:

at (truck locl)

linked(locl loc2)
add:

at (truck loc2)
del:

at (truck locl)

transforms the ‘at’ property of trucks. The reusability of

troduce an upper bound on the plan length allowed to ensure macro-actions is adversely affected by transformation op-
that an u_nreasonable amount of_time is not spent solving t_he erators, as they often appear in chains of varying lengths;
smaller instance; in practise this does not prevent Marvin consequently, abstraction of the length of these chains is re-
from generating useful macro-actions as preliminary exper- quired if the macro-action is to be as reusable as possible.
iments_show large macro-actions are often too specialised to Generating sequences of transformational operators is a
a certain task and are therefore not reusable. shortest path problem, which can be solved by a specialist
) ) solver. Marvin currently recognises transformational oper-
Plateau-Escaping Macro-Actions ators by looking for a common fingerprint; however, in the

Solutions to planning problems often contain a given se- future TIM (Long & Fox 2000) will be used to provide a
quences of actions more than once; if finding this reused Method through which these operators can be identified in a
action sequence corresponds to exhaustive search a lot ofMOre-robust manner. .
unnecessary search effort is expended in repeatedly attempt- When transformational operators have been identified an
ing to find this action sequence. Marvin attempts to im- all-pairs shortest-path reachability analysis is done, during
prove on the plateau behaviour of previous forward-chaining Which the best route between two states is stored; then, static
planners by memoising the action sequence which success-Predicates for all pairwise reachable states are added to the
fully lead from the start of a plateau to a strictly-better state; initial state so that Marvin can plan as if the states were all
these memoised action sequences form what are known aslinked. When an action is later selected for application the
plateau-escaping macro-actions. To reduce the overheadsmain algorithm simply asks the sub-solver for the action se-
of having a greater number of actions to consider at each duence required to achieve the desired effect.

state these plateau-escaping macro-actions are only consid-

ered when plateaux are encountered: in normal search only ADL

the original actions from the domain, and any actions de- Marvin supports ADL natively; that is, without creating dis-
rived from the solution to the reduced instance, are used.  tinct STRIPS actions for each of the possible ADL action
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Figure 1: Example Satisfaction Tree

groundings. ADL support was written for the purpose of
solving the competition ADL domains—without it, due to
the nature of the STRIPS compilations provided, Marvin
would not have been able to construct any reusable macro
actions.

ADL preconditions are dealt with through the logical re-
duction of each operator’s preconditions to form a ‘Satisfac-
tion Tree'. The idea is to create a tree where the leaves are

The relaxed planning graph in Marvin is modified to ac-
count for the negative preconditions required by ADL. Be-
fore the ADL support was implemented a spike (Long & Fox
1999) for positive predicates was used; to build a relaxed
planning graph forward from a given state the spike was ini-
tialised to contain the predicates in a given state and then
grew as applied relaxed actions added predicates to it. To
support negative preconditions a second spike was created;
this spike is initialised to be empty and then any predicate
present in the initial fact layer which is then, later, deleted
is added to it. A negative precondition is then satisfied at
a given layer in the relaxed planning graph either if it isn’t
present in the initial fact layer or it has since appeared in the
negative fact spike.

Future Work

In the future Marvin will be extended to use the generic-
type recognition knowledge provided by TIM (Long & Fox
2000). This will, amongst other things, improve its sup-
port for transformational operators by providing a flexible
framework for their identification; also, it raises the possibil-
ity of using generic-type-derived heuristics to improve the
discrimination between states when the relaxed plan graph
heuristic reaches a plateau.

Marvin will also be extended to deal with Temporal Plan-

predicates (or negations of predicates) and the internal nodespjng:  as it already uses macro-actions and concurrency,

are either conjunction or disjunction nodes (AND or OR);
then, predicates either help a given ground action become
applicable (if they appear as positive predicate leaves in its
satisfaction tree) or hinder its applicability (if they appear as
negative predicate leaves). The tree is formed by recursively
applying the following rules to each action’s preconditions:

(Vzf(z)) = (f(zo) A... A flzn))
Jzf(z)) = (f(xo) V...V f(22))
a=b)=(-aVb)

(T()/\.../\Tn)) = (ﬁTo\/...\/ﬁTn)
(ToV...VT,))= ("To A ... AN—Ty)

The first two of these simply compile out the existential
guantifiers dynamically; the third is a logical reformation of
the implies operator; the final two, forms of De Morgan’s
duality law, are used to force any negation into the subex-
pressions, and eventually to the predicates.

Figure 1 shows an example satisfaction tree for an action
in an imaginary domain in which objects can only have a
certain action applied to them if they are being held and are
either blue or green.

ADL effects are handled in a similar manner to precon-
ditions, in that they form ‘Effect Trees’; there are differ-
ences, however, due to the differing semantic structure be-
tween Preconditions and Effects: Effect Trees do not con-
tain OR nodes; instead they introduce ‘When’ nodes. When
nodes have two child branches - a condition branch (which
is, itself, a satisfaction tree) and an effect branch (which is
an effect tree). When an action is grounded any uncondi-
tional effects and effects contingent only on static predicates
are associated with the ground action instance; sub-actions
are then created to encapsulate any effects contingent on dy-
namic information.

(
(
(
(

-
-
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much of the framework is already complete.
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Introduction

In this paper we propose a Petri net based representation for
planning problems. The motivation for this is that Petri nets
are a formal tool useful to model and analyse domains in-
volving true parallelism, concurrency, conflicts, and causal
relations which are beyond the scope of classical planning.

In (Silva, Castilho, & Kiinzle 2000) we presented a way
to translate the plan graph into an acyclic Petri net. This
would already serve as a basis for our desired analysis on
non-classical planning. However, that translation kept the
same redundancies of the plan graph. It just translate propo-
sitions and actions in the plan graph to places and transitions
in the Petri net.

In this first translation we didn’t explore the dynamics of
Petri nets. In the approach proposed in this paper we show
the construction of the Petri net directly from the description
of the problem. In this new structure, we give another view
about the mutex relation and maintenance actions. We give
details about this in section .

In Petri nets, a planning problem corresponds to a
submarking reachability problem. This is known to be
EXPspace-hard (Lipton 1976; Esparza & Nielsen 1994) in
the general case. Fortunately, our net is an acyclic one and
in this case we are in the NP-complete case (Stewart 1995),
which is what we expected. Anyway, to solve the reachabil-
ity problem is not straightforward and due to lack of space
we refer the reader to (Rauhamaa 1990). In this paper we
focus on the structure of our model.

In the next section we recall the basis of Petri nets. Then
we present the construction of a Petri net directly from the
description of the planning problem. Finally we present
some concluding remarks.

Petri Nets, Reachability and the Petriplan
algorithm

A Petri net (Murata 1989) is a 4-tuple N
(P, T, Pre, Post) where P = {p1,p2,...,pn} is a fi-
nite set of places, T' = {t1,ta,...,t,} is a finite set of
transitions, Pre : P x T' — N is the input incidence
function and Post : P x T — N is the output incidence

Copyright (© 2004, American Association for Artifi cia Intelli-
gence (www.aaai.org). All rights reserved.
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function. A Petri net with a given initial marking is denoted
by (N, My) where My : P — N is the initial marking.

The Petri net dynamics is given by firing enabled tran-
sitions, whose occurrence corresponds to a state change of
the system modelled by the net. A transition ¢ of a Petri
net N is enabled for a marking M iff M > Pre(.,t). This
enabling condition, expressed under the form of an inequal-
ity between two vectors, is equivalent to Vp € P, M(p) >
Pre(p,t).

Only enabled transitions can be fired. If M is a marking
of NV enabling a transition ¢, and M’ the marking derived
by the firing of ¢ from M, then M’ = M + Post(.,t) —
Pre(.,t). Note that the firing of a transition ¢ from a marking

M derives a marking M": M 4 M.

We can generalise this formula to calculate a new mark-
ing after firing a sequence s of transitions. Let us consider a
matrix C' = Post — Pre, called Petri net incidence matrix,
and a vector s, called characteristic vector of a firing se-
quence s (s : T — N, such that 5(¢) is the number of times
that transition ¢ appears in the sequence s). The number of
transitions in T" defines the dimension of the vector 5. Then,
firing a sequence s of transitions from AZ, a new marking
M, is calculated by the fundamental equation of NV:

Mg =M+ CS5. 1)

We can use the fundamental equation to determine a vec-
tor 5 for a given net IV and two markings M and M,. The
satisfying solution must be a nonnegative integer vector, and
it is only a necessary condition for A, to be reachable from
M. This condition becomes necessary and sufficient for
acyclic Petri nets, a subclass of Petri nets that have no di-
rected circuits (Murata 1989).

The reachability relation between markings of a firing
transition can be extended, by transitivity, to the reacha-
bility of the firings of a transition sequence. Thus, in a
Petri net IV, it is said that the marking M, is reachable
from the marking M iff there exists a sequence of transi-
tions s such that: M % M,. The reachability set of a
marked Petri net (I, My) is the set R(N, M) such that
(M € R(N, My)) & (IsMy > M).

We call the reachability problem for Petri nets the prob-
lem of determining if a given marking M, is reachable from
My. The sub-marking reachability problem for a given
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sub-marking M, consists of determining if exists a mark-
ing M, that is reachable from M, and M, C Mg, where
M, € R(N,My). In (Rauhamaa 1990) we have several
different techniques to solve it.

The Petriplan algorithm consists in two steps: first, the
construction of a Petri net from the description of the plan-
ning problem; then find a sequence of transitions firings that
solves the reachability problem. In the next sections we ex-
plore the construction of the net directly from the description
of the problem, taking profit of the representational power of
a Petri net.

The plan net

In this section we modify the structure of our Petri net de-
fined in (Silva, Castilho, & Kiinzle 2000) and define what
we call the plan net, which is simply a Petri net obtained
directly from the description of the problem exploring the
representational power of Petri nets. We need however to
explain two important points before showing the construc-
tion technique.

First of all, let’s consider the representation of proposi-
tions. In the beginning of the construction of the net a place
represents a proposition. During the process when it is found
that a proposition is a precondition of more then one action,
we just copy the place. It may happen that a place will be
copied several times.

Now let’s consider the possible inconsistencies between
actions. In the plan graph this means to look for the mutex
relation between action in some layer. When this is found
the actions are marked as mutex, i.e., these two actions can-
not be executed at the same time. This forces the copy of
the entire layer to a new one using maintenance actions. In a
certain sense the conflict is not completely solved, just in the
“search for a solution” phase the two actions are ordered.

In our case the proposal is to have no maintenance actions.
What we do is to refine the mutex relation. We relate two
actions in five different ways, not only two (mutex and not
mutex). Let = and y be two actions. We define the following:

e (x 1 y): they are totally independent, that is, they may
happen even in parallel. This is the “not mutex” in the
plan graph sense. It may be possible to have only z, only
vy, = followed (or preceded) by y and x and y in parallel;

e (x » y): x has as effect the negation of some effect of
y. This way x and y may occur in any order, but not in
parallel;

e (x A y): z hasas effect the negation of some precondition
of . So x could not occur before or in parallel with y;

e (z % y): y hasas effect the negation of some precondition
of z. So y could not occur before or in parallel with z;

e (xoy): x Ayandz ¥ y. The given actions may occur
just each one alone or with a third action between them.

This is an important difference between the graph and the
plan net. The price for this is that we need to find out the
correct kind of relation between two actions. The algorithm
is based on a graph structure called graph of static inconsis-
tencies, which is a graph whose nodes are actions and there
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Figure 1: Graph of static inconsistencies for the first layer.

is an edge of type ¢ linking = and y if x is related with y with
respect with relation ¢. Observe that (x ¢ y) is the stronger
case. The process of construction of this graph has the same
computational cost of finding all the static mutex relations
in the plan graph.

Now we are in condition to show the algorithm to con-
struct the plan net. This process follows the idea of the con-
struction of the plan graph. It begins with marked places
representing the initial state.

We enter then in a loop looking for the places represent-
ing the final state. This loop has three phases, which are
described in details below.

Phase 1: we add transitions representing all possible ac-
tions whose preconditions are already in the net. If some
place is already a precondition of some other transition cre-
ate a copy of this place. This copy is not needed only in the
case whether the consequence of the action is the negation of
that precondition been copied. This copy will be linked with
the transition been added. This phase will define a layer, i.e.,
all possible actions that may be fired simultaneously.

Phase 2: we construct the graph of static inconsistencies
for the transitions in the last generated layer (figure 1). Itis
constructed as we explained above. This graph will guide
the construction of the control structure of the net. This is a
Petri net containing all possible sequences of non inconsis-
tent actions present in the last generated layer. The places
here are not associated with propositions, they are just con-
trol places. We merge this structure in the net. The merge
process is to include copies of the actions appearing in the
control structure that are not in the original net. But we do
not need to copy the places representing preconditions of
the actions been copied. For example in figure 2 the ac-
tion mft(b, c)° was copied to m ft(b, ¢)!, but both share the
same preconditions £(b)!, f(c)" and ot(b)°. At the end of
this phase we have a Petri net containing all possible ways
of executing the actions without any conflict in this layer.
Figure 2 shows the resulting net.

We must say that the notion of layer in the Petri net is dif-
ferent from that in the plan graph. Here, a layer may contain
actions happening in more than one instant of time, whereas
in the plan graph each layer is associated with only one in-
stant of time. Due to the process of construction based on
the graph of static inconsistencies we can warrant that there
is no static inconsistent sequences of actions in each branch
of the net in this layer.

Phase 3: if the net contains places representing the goal
state we enter phase 3, i.e., we will look for a solution. That
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Figure 2: The first layer for Sussman anomaly with control
structure.

means to find a flow in the net which puts tokens in the
places representing the goal state. This is the reachability
problem in Petri nets. As said, we refer to (Rauhamaa 1990)
for the complexity of this problem. If such a flow exists, then
it is a (possibly parallel) plan. In the other case, we return to
phase 1. In our example there is no such a flow. So we must
return one more time to phase 1 and 2. For lack of space we
will not show the figures. Now in phase 3 the flow exists.
Figure 3 the final Petri net for the Sussman anomaly. This
net is a simplified version containing just the paths which
reach some goal state place.

Figure 3: Final Petri net for the Sussman anomaly.

Discussion

Relations between Petri nets and planning problems were
former investigated by (Murata & Nelson 1991) and (Mieller
& Fabiani 2000). The first use a general cyclic predicate-
transition Petri net. The problem is that the necessary and
sufficient condition of equation 1 is broken, and the only
way to solve the reachability problem is to use the reach-
ability graph, which leads to an enumerative search for a
solution.

The second approach defines a cyclic coloured Petri net,
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in which each place corresponds to a logical predicate de-
scribing actions preconditions or effects. The operators in-
stantiation is made by token colours. The theoretical model
obtained for the resulting planning problem is in fact more
compact than ours, but it presents the same problem of ex-
haustive search, as in (Murata & Nelson 1991).

In our approach, however, we have a simpler acyclic
place-transition Petri net, with necessary and sufficient con-
ditions to use the equation 1 to find a solution to the plan-
ning problem. This paper modifies our first presentation of
the Petriplan algorithm (Silva, Castilho, & Kiinzle 2000) by
taking profit of the dynamics of the Petri net thus reducing
the structure.

Finally, the method proposed in this paper permits to con-
struct a Petri net representation of the planning problem. As
others methods, we can find a solution to the planning prob-
lem, in our case using reachability algorithms. The classical
way is to start an exhaustive search, just as Graphplan does.
However, as we have an acyclic Petri net, the matrix rep-
resentation of the fundamental equation can be viewed as a
constraint satisfaction problem, which can be solved using
several methods, as integer programming, SAT, among oth-
ers.

References

Esparza, J., and Nielsen, M. 1994. Decidability issues for
Petri nets - a survey. Bulletin of the European Association
for Theoretical Computer Science 52:245-262.

Lipton, R. J. 1976. The reachability problem requires expo-
nential space. Technical report, Dept of Computer Science,
Yale University. research report 62.

Mieller, Y., and Fabiani, P. 2000. Planning with Petri nets.
In Proc. of RICIA-2000.

Murata, T., and Nelson, P. 1991. A predicate-transition net
model for multiple agent planning. Information Sciences
57-58:361-384.

Murata, T. 1989. Petri nets: Properties, analysis and appli-
cations. Proceedings of the IEEE 77(4):541-580.

Rauhamaa, M. 1990. A comparative study of methods for
efficent reachability analysis. Technical Report A 14, Digi-
tal Systems Laboratory, Helsinki University of Technology.
http://citeseer.nj.nec.com/245545.html.

Silva, F.; Castilho, M.; and Kiinzle, L. 2000. Petriplan: a
new algorithm for plan generation (preliminary report). In
Proc. of IBERAMIA/SBIA-2000, 86-95. Springer-Verlag.
Stewart, I. A. 1995. Reachability in some classes of acyclic
Petri nets. Fundamenta Informaticae 23(1).


edelkamp
29


SGPlan: Subgoal Partitioning and Resolution in Planning*

Yixin Chen, Chih-Wei Hsu, and Benjamin W. Wah
Department of Electrical and Computer Engineering
and the Coordinated Science Laboratory
University of lllinois, Urbana-Champaign
Urbana, IL 61801, USA
{chen,chsu,wah}@manip.crhc.uiuc.edu

Techniques
Abstract c Pllan. Lﬁgrdantgesltllu:tiplieT Studied
t H

We have developed SGPlan, a planner that com- valuation prate Sraedy Global
petes in the Fourth International Planning Com- onsuraint
petition. SGPlan partitions a large planning prob- ‘ Global Constraints on Subgoals
lem into subproblems, each with its own subgoal,
and resolves inconsistent solutions of subgoals us- /4 \\_
ing our extended saddle-point condition. Subgoal e Gl o o e Ien g:‘digr?nﬂ
partitioning is effective because each partitioned i
subproblem involves a substantially smaller search GA

space than that of the original problem. We have
developed methods for the detection of reason-
able orders among subgoals, an intermediate goal-

\ Decomposition

/

A

O
H
e

e[l - -
AN

Subgoal-Level Planning Global-Level Planning

agenda analysis to hierarchically decompose each Basic
subproblem, a search-space-reduction algorithm to Sﬂfg‘crt‘f);
eliminate irrelevant actions in subproblems, and [ LPG cee }

a strategy to call the best planner to solve each SS‘:)ZVCC:

bottom-level subproblem. Currently, SGPlan sup- Reduction

ports PDDL2.1 and derived predicates, and algo- ) _
rithms for supporting time initiated facts and ADL Figure 1:The architecture of SGPlan.

are under development. ) .
subgoals, prune irrelevant facts and actions before call-

ing a basic planner, and choose a suitable basic planner
OVERALL ARCHITECTURE for solving the second-level subproblem.

By formulating a subproblem in such a way that each Figure 2 presents the pseudo code of our planner.
has one goal state, SGPlan partitions a planning prob- Based on the subgoals identified, we partition the prob-
lem into subproblems, orders the subproblems accord- lem into N subproblems,,--- , Gy, one for each
ing to a sequential resolution of its subgoals, and finds subgoal, and order the subproblems appropriately. For
a feasible plan for each goal fact. Using the ex- @G;, we perform an intermediate-goal-agenda (IGA)
tended saddle-point condition and constrained search, analysis to decompose it intd; smaller subproblems
new constraints are enforced to ensure that factsand as-P, ;,--- , P, ¢,. For each second-level subproblem,
signments in a later subgoal are consistent with those of we perform subspace-reduction analysis to reduce its
earlier subgoals. search space and choose a suitable planner (dzted

Figure 1 shows the architecture of our planner. In planner) to solve it. Finally, we evaluate the composed
the global level, we select a suitable order for the plan- plan and update the Lagrange multipliers.
ner to solve the partitioned subgoals, introduce artifi- Our approach is different from incremental plan-
cial global constraints to enforce that the solution of one ning (Koehler & Hoffmann 2000) that uses a goal
subgoal solved later does not invalidate that of an earlier agenda. In incremental planning, a planner maintains a
subgoal, and resolve violated global constraints using set of target facts, adds goal states incrementally into the
the theory of extended saddle points. In the local level, target set, and extends the solution by using the new tar-
we perform a hierarchical decomposition of first-level get set. This means that a goal state will always be sat-
isfied once it is satisfied. However, it may be more ex-

*Research supported by the National Aeronautics and - g
bp y pensive to solve subsequent problems, since the search

Space Administration Grant NCC 2-1230 the National Sci-

ence Foundation Grant ITR 03-12084. space increases as more goal states are added. More-
Copyright(© 2004, American Association for Artificial Intel- over, it is difficult to tell which goals should be satisfied
ligence (www.aaai.org). All rights reserved. before others. In contrast, SGPlan always involves only
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1. procedure SGPlan

2. compute the partial orders among subgoals;

3. generate an initial ordered list of subgoals;

4, setiter «— 0;

5. repeat

6. for each goal fact in the subgoal list

7. find the intermediate goal facts;

8. generate an IGA agenda;

9. for each entry in the IGA agenda

10. call search space reduction procedure and

eliminate irrelevant actions;

11. call basic planner to solve the subproblem;

12. end_for

13. end_for

14. if (planz found is feasible)

15. evaluate the solution plan;

16. decrease some Lagrange multipliers;

17. eseincrease Lagrange multipliesson unsatisfied
global constraints;

18. iter «— iter + 1;

19. if (iter % 7 == 0) dynamically re-order the subgoals;

20. until no change or and~ in an iteration;

21.end_procedure
Figure 2:The pseudo code of SGPIlan.

one goal fact in a subproblem. Therefore, the search
space of the subproblems is not increasing, and irrele-
vant actions in each subproblem can be pruned.

GLOBAL-LEVEL PLANNING
Subgoal Ordering and Global Constraints

more difficult subgoals, with less irrelevant actions.

For goal pairs not ordered by the first two levels, we
apply the third level of ordering callgarecondition or-
dering. Specifically, forA and B with the same number
of irrelevant actions that cannot be ordered by reason-
able ordering, we ordef beforeB if n,(A) > n,(B).
Here,n,(A) is the minimum number of preconditions
of those supporting actions:

ny(A)

)

whereS(A) is the set of all actions that support goal fact
A, andn,,. is the number of preconditions of actian
Again, the idea is that more difficult goals, with larger
np, Should be resolved first.

For pairs of subgoals that are not involved in any of
the three levels or ordering, we randomly order them.
At the beginning of a search, we randomly generate a
total ordering of the goal facts that satisfy the three lev-
els of partial orders (Step 3) and periodically generate
new total orders during the search (Step 19).

To identify conflicts among solutions of subgoals, we
define a global constraint so that the solution plan of
a subgoal will not invalidate the goal fact of another
subgoal. Each global constraint in SGPlan is a binary
constraint that indicates whether conflicts exist or not.

min n a
a€S(A) pre(@),

Resolution of Global Constraints

The planning problems studied in SGPlan are defined
in mixed space with nonlinear objective and constraints
that may be procedural and not in closed form. SGPlan

When dependent subgoals are evaluated sequentially, itimplements a search to find extended saddle points in

is possible that a subgoal evaluated later may invalidate

the results of a subgoal evaluated earlier, and the ear-

lier subgoal has to be re-evaluated. Although such con-
flicts may be unavoidable, appropriately ordered sub-
goals can significantly reduce the occurrences of such
conflicts. Intuitively, difficult subgoals should be re-
solved before easier ones.

It is non-trivial to find an optimal order that mini-
mizes the conflicts among subgoals. In fact, it may be
more computationally expensive to find the best order
than solving the problem itself. In SGPlan, we have de-
veloped three heuristics for partial ordering of subgoals
that can be computed efficiently (Step 2 of SGPIan).

The first level is calleaeasonable ordering proposed
in (Koehler & Hoffmann 2000). Suppose goal fatis
ordered before3 in the subgoal list, but after we get a
plan that achieved, we cannot achiev& without in-
validating A first. Then the search for achievingfirst
is wasted, and it is more efficient to achieiebefore
A. We use an algorithm in FF2.2 (Koehler & Hoffmann
2000) to find such reasonable orders.

For goal pairs not ordered by reasonable ordering,
we apply a second level of ordering calledelevance
ordering. Based on backward relevance analysis (dis-
cussed in the next section), we compute the number of
irrelevant actions of each goal fact, and ordebefore
B if A has less irrelevant actions. The idea is to resolve
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the Lagrangian space of a problem (Chen & Wah 2003;
Wah & Chen 2003). The extended saddle-point condi-
tion (ESPC) states that solution points in mixed space
that are local optima of the objective and that satisfy
all the constraints must satisfy ESPC. The condition is
defined on a Lagrangian function that consists of the
sum of the objective and the constraints weighted by
Lagrange multipliers, where an extended saddle point is
a point that is a local minimum of Lagrangian function
with respect to the original variable space and a local
maximum of the function with respect to the Lagrange-
multiplier space.

An important property of ESPC is that the condition
is true for all Lagrange multipliers larger than a mini-
mum threshold. Hence, finding points that satisfy ESPC
can be implemented iteratively, with an inner loop that
looks for local minimum of the Lagrangian function,
and an outer loop that looks for any Lagrange multipli-
ers larger than the critical threshold. The property also
allows a search looking for extended saddle points to
be partitioned into multiple searches, each looking for
a local extended saddle point for a partitioned problem
(Steps 6-12 of Figure 2), and an outer loop that resolves
the global constraints across the subproblems (Step 17).

A direct implementation of ESPC in a search algo-
rithm may get stuck in an infeasible region when the
objective is too small or when the Lagrange multipliers
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and/or constraint violations are too large. To address
this issue, SGPlan performs periodic decreases of La-
grange multipliers in the Lagrangian space in the outer
loop, in addition to ascents (Step 16).

SUBGOAL-LEVEL PLANNING
Subgoal-L evel Decomposition

Sometimes the subproblems after first-level partitioning
by subgoals are still too large to be solved quickly. An
obvious approach to reduce this complexity is to further
partition the subproblem into smaller ones.

Given subgoa~ after first-level partitioning, we pro-
pose to identify some “hidden” intermediate second-
level subgoals (or facts) that must be true in any plan
that achievegs from a given initial state (Steps 7 and
8). These facts allow us to construct an intermediate
goal agenda (IGA), which is an ordered list of agenda
entries, each containing a set of intermediate facts.

From a fixed initial stateS, we define the following
relationship between two factd and B. A is an in-
termediate goal befor®, denoted asA <;q4 B, if
the planning graph starting froifi cannot achieveB
without achievingA first. We construct the planning
graph similar to that in Graphplan, with the following
two changes: a) we do not compute any mutual exclu-
sion relations; b) we forbid the insertion df into the
planning graph at any level (thereby also forbidding the
insertion of any actions having as a precondition). If
B is not in the planning graph after the construction of
the graph, then we havwé <;54 B.

Based on the intermediate facts, we detectthg 4
orders among them and construct a directed graph
showing their partial orders. We then identify an agenda
of sets of facts that must be true in any plarGof

SGPlan determines dynamically whether partitioning
should be further carried out, depending on whether a
subgoalG is easy enough to be resolved quickly us-
ing the IGA agenda. If subgod! is to be partitioned,
SGPIlan further uses symmetry-group detection to see if
a path can be constructed from the current facts to the
subgoal: fo — f1 — -+ — G, wherefy, fi,--- are
all in the same symmetry group as that@f It then
partitions the problem of achieving from f; into N
subproblemsyfy — f1, fi — f2,..., fn—1 — G.

Our approach is different from existing approaches
for finding intermediate facts (Koehler & Hoffmann
2000) that expand a search space from the goal state and
find some indispensable pre-conditioning facts. Since
the initial state is not specified, there is no way to tell
to what depth the backward expansion should stop. In
contrast, our method considers both the initial and the
goal states in determining whether an intermediate fact
is critical and always stops in finite levels of expansions.
In addition, we detect the partial orders among these
facts and form an agenda to avoid unachievable inter-
mediate states, which could occur in previous methods.
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Sear ch-Space Reduction

After partitioning a subproblem into easier second-level
subproblems, we can often eliminate many irrelevant
actions in their search space before solving them. Such
areduction is generally not applicable to planning prob-
lems that are not partitioned because in most cases all
actions in their search space are relevant.

We have designed a polynomial-tirhackward rel-
evance analysis to exclude some irrelevant actions be-
fore applying any planner to solve a subproblem (Step
10). Given a subproblem to be solved, we maintain an
open list of unsupported facts, eose list of relevant
facts, and aelevance list of relevant actions. In the be-
ginning, the open list contains only the subgoal facts of
the subproblem, and the relevance list is empty. In each
iteration, for each fact in the open list, we find all the
actions supporting that fact and not already in the rele-
vance list. We then add these actions to the relevance
list, and add the action preconditions that are not in the
close list to the open list. We move a fact from the open
list to the close list when it is processed. The analy-
sis ends when the open list is empty. At that point, the
relevance list will contain all possible relevant actions,
while excluding those irrelevant actions.

Since partitioned subproblems usually have similar
structures, we learn suitable rules for subproblem solv-
ing during a search. After a number of trial-and-error,
SGPIlan records some suitable heuristics and parameters
that lead to the successful resolution of subgoals and use
them in solving other subproblems.

Basic-Planner Selection

Our current implementation of SGPlan uses a modi-
fied Metric-FF planner for basic planning and only in-

vokes LPG when the modified planner fails. We have
developed new algorithms and modified heuristic func-
tions in the enhanced Metric-FF to fully support derived
predicates, temporal planning, and time initiated facts
(still under development).
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I ntroduction

LPG-TD is an extension of the LPG planner (Gerevini, Saetti,
& Serina 2003; 2004) that can handle most of the features of
PDDL2.2 (Edelkamp & Hoffmann 2003), the standard plan-
ning language of the 4th International Planning Competi-
tion (IPC-4).! In particular, LPG-TD is an incremental fully-
automated planner generating plans for problems in domains
involving:

e STRIPS actions;

o durative actions;

e actions and goals involving numerical expressions;

o operators with universally quantified effects;

o operators with existentially quantified preconditions;
e operators with disjunctive preconditions;

e operators with implicative preconditions;

o timed initial literals (deterministic unconditional exoge-
nous events);

e predicates derived by domain axioms;

e maximization or minimization of complex plan metrics.

Like the previous version of LPG, the new version is based
on a stochastic local search in the space of particular “action
graphs” derived from the planning problem specification. In
LPG-TD, this graph representation has been extended to deal
with the new features of PDDL2.2, as well to improve the
management of durative actions and of numerical expres-
sions (already supported by PDDL2.1 (Fox & Long 2003)).

In the following, we briefly describe the main novelties of
LPG-TD, which include some new techniques for planning
problems involving timed initial literals and derived predi-
cates, and some general improvements of all phases of the
planner (pre-processing, search and post-processing).

Copyright (© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1The “TD” extension in the name of the planner is an abbre-
viation of “Timed initial literals and Derived predicates”, the two
main new features of PDDL2.2.
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Handling Timed Initial Literals

Timed initial literals represent facts (predicates instantiated
with constants) that become true or false at certain time
points, independently of the actions in the plan. They cor-
respond to particular exogenous events known by the plan-
ner (Edelkamp & Hoffmann 2003). A fact can become true
or false several times through different timed initial literals,
defining a set of disjoint temporal windows where the fact
holds. For example, the first problem of the Sat el | i t e do-
main in IPC-4 has two timed initial literals

(at 139. 00 (vi si bleantennaOsatel lite0)),
(at 219. 04 (not (vi sibleantennaOsatellite0)))

defining a single temporal window for the fact
(visibleantennaO satellite0).

According to PDDL2.2, the fact involved by a timed initial
literal can appear in the preconditions of an action, while
it can never appear in its effects. We call such precondi-
tions timed preconditions, and we represent them as partic-
ular nodes of the action graph. If a plan action a has a timed
precondition p of type “overall” involving a fact f, p is sat-
isfied when the interval identified by the start time and the
end time of a is contained into at least one temporal window
associated with f. Similar conditions can be defined for the
other possible types of preconditions in a durative action.

Essentially, an unsatisfied timed precondition involving a
fact f in a is treated by either (i) removing a from the plan
under construction, or making some changes to the plan that
make the execution of a compatible with a temporal window
associated with f, i.e., by (ii) appropriately postponing the
start time of a, or (iii) removing one or more actions that
permit to decrease the start time of a.

In the new version of LPG, the graph-based plan represen-
tation, the pre-processing phase (reachability analysis and
computation of the “mutex relations™), and the search tech-
niques have been extended to perform such plan modifica-
tions when dealing with unsatisfied timed preconditions.

Handling Derived Predicates

Derived predicates are predicates that can not be achieved
directly by the domain actions. A derived predicate P(Z) is
true at a certain time ¢ during the execution of a plan iff it
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can be derived from the facts that are true at time ¢ through
a set of rules specified in the domain formalization. Each of
these rules is of the form

if #(z) then P(%),

where Z is a tuple of variables, and ¢(z) a logical formula
(a precise syntactic and semantic definition of domain rule
is given in (Edelkamp & Hoffmann 2003)).

A typical example of derived predicate in the
Bl ockswor | d domain is above, which can be derived
by using the following rule:

if (on(z,y) V 3z above(z, z) A above(z,y))
then (above(z, y).

In PDDL2.2, a derived predicate can be a precondition of
an action or a goal of the planning problem, which we call
derived precondition (we treat problem goals as precondi-
tions of a special final action). A derived precondition of an
action a is satisfied if it is implied by the domain rules and
the facts that are true when a is executed.

Essentially, an unsatisfied derived precondition d in a is
treated by either (i) removing a from the current plan, or (ii)
adding one or more actions that modify the set of the facts
that are true when the action can be executed in the plan,
so that d becomes true by applying of one or more domain
rules. For example, consider a simple Bl ockswor | d prob-
lem where the initial state is

(on-tablea), (on-tableb),(oncb)

and the goal is (above a b) . When the domain rule of the
previous example is available, it is easy to see that the goal
can be achieved by just adding to the (initially empty) plan
the action st ack(a, ¢c) making (on a c) true.

In the new version of LPG, the graph-based plan represen-
tation, the pre-processing phase (reachability analysis and
computation of the mutex relations), and the search tech-
niques have been extended to take possible domain rules into
account.

Further Extensions

In addition to the treatment of timed initial literals and de-
rived predicated, the new version of our planner includes
several revisions and extensions with respect to the version
that took part in the previous competition. Such changes
concern the pre-processing phase, the search phase, and
post-processing phase of the planner. In the following, we
give a list of them.

Pre-processing

e The algorithm for computing mutex relations has been
revised to make it faster than the original algorithm de-
scribed in (Gerevini, Saetti, & Serina 2003).

e Some actions are automatically identified as “useless ac-
tions”, and they can be pruned away at parsing time or
they can be neglected during search.

e The computation of the reachability information for nu-
merical domains has been improved to derive more accu-

34

rate information that are exploited by the heuristic func-
tion evaluating the search neighborhood.

Search

e We have developed new heuristics for evaluating the
search neighborhood specialized for the different variants
of a planning domain supported by PDDL2.2.

e The basic local search strategy (Walkplan) has been ex-
tended with a “tabu list” helping to escape from local min-
ima.

Post-processing

o \We have developed a technique for increasing the degree
of parallelism in the plans generated by LPG for domains
with durative actions and numerical expressions. This is
done by an algorithm that, starting from the set of the ac-
tions forming the plan and their ordering constraints iden-
tified by the planner, tries to reduce the plan makespan.

Finally, at the time of writing, the development of LPG-
TD is still in progress. In particular, we are experimenting
a pre-processing technique for the automatic ordering of the
problem goals, and we are developing an extension of the
representation for handling actions involving conditional ef-
fects.
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Abstract

Described here is the temporal metric planner CRIKEY
as it competed in the International Planning Compet-
ition 2004. CRIKEY separates out the planning and
scheduling parts of temporal planning problems, and
detects where these two sub-problems are too tightly
coupled to be separated completely. In these cases it
solves the sub-problems together. The domains of the
competition are looked at to see where these interac-
tions occur.

Introduction

CRIKEY is a forward heuristic search planner based closely
on MetricFF (Hoffmann 2002) and implemented in Javal.4.
In a similar fashion to MIPS (Edlekamp & Helmert 2000), it
separates the planning and scheduling where it can, however
it solves the two problems together where such a relaxation
will fail. It is this combining of the problems only where
necessary and the reasoning associated with it that distin-
guishes it from other similar planners (and where the focus
of the research lies). It can detect these cases in the domain
and act accordingly. | am only interested in where the inter-
action and separation of sub-problems will prevent a solu-
tion being found, and not where this separation leads to an
inferior quality of solution. CRIKEY is complete and sound
but not optimal (either in time or the specified metric). It
will however make an attempt to minimise the number of
actions in a plan.

Capabilities

CRIKEY was written to work with the PDDL2.1 (Fox
& Long 2001) models of metrics and time. It can deal
with both temporal aspects (i.e. durative actions) and
metrics resources. More formally, it can parse and plan
with PDDL domains with thetyping , :fluents |, and
:durative-actions requirements. Unfortunately, cur-
rently it can not make use of any of the ADL constructs or
the new language features (namely, timed initial literals or
derived predicates).

Copyright © 2004, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.
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Architecture

The architecture of CRIKEY is shown in Figure 1. It
first looks at the domain for where planning and schedul-
ing could potentially interact. Then it performs forward
heuristic search using a relaxed plan graph. The mini-
scheduler makes sure that a schedulable plan is passed into
the scheduling phase. This consists of lifting a partial order
plan from the totally ordered plan, and then turning this into

a temporal plan. Crucially, there is no feedback from the
scheduling phase to the planning phase, therefore the plan-
ner must produce a plan that the scheduler can schedule.

Technical Details
Planning

CRIKEY finds a plan through forward heuristic search sim-
ilar to FF (Hoffmann & Nebel 2001). During planning, tem-
poral information is ignored. The search strategy is enforced
hill climbing, that is, once a better state is found, search pro-
ceeds from that state without backtracking. Best first search
is used on plateaus, where all neighbouring states are no im-
provement on the current state. If enforced hill climbing
fails, best first search is attempted from the initial state. This
is complete and so theoretically should find a plan.

The heuristic value is the length (number of actions) of a
relaxed plan where the delete effects are ignored. The re-
laxed plan is from the current state to the goal state and is
easily extracted from a relaxed planning graph.

As in FF, only helpful actions are considered in the en-
forced hill climbing. Helpful actions are actions which ap-
pear in the first layer of the relaxed planning graph and are
also in the relaxed plan.

Scheduling

A greedy algorithm (Morenet al. 2002) works backwards
through the totally ordered plan finding causal links between
the starts and ends of actions to form a partially ordered
plan. Links are eitheK or < (in which case a minimum
value equal to the tolerance value must separate the two end
points). These are put into an STN upon which Floyds-
Warshalls Algorithm is to calculate the actual time of the
actions in the partially ordered plan.

The algorithm must not only look for orderings based on
logical conditions, but also for orderings due to metric con-
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to happen during their duration. These happen where:
(endeona \ startaqq # O A startaqq \ endeona # 0)
Vstartge N endeong 7 0
Vaddstart N deleng # 0
We shall name three statesl, the state immediately be-

Temporal Domain

Extracted fore the start of the actions2, the state immediately after
Temporal the start, and3 the state immediately after the end of the
Classical Information action. An action applicable is2 and not ins1 must have
Problem been achieved by the at start add effects (since there are no
PLANNING negative conditions, it could not have been achieved by an
at start delete effect). Taking it further, there are no actions
Current that could be applied ir2 and not ins3 which could not

have been applied inl, apart from those achieved by the
at start add effects and then deleted by the at end delete ef-
fects. Alternatively, an action could be achieved by the start
effect, and the effects of this action needed to achieve the

Actions l State
— (Forwardg— =
¢« \ Search -
STN Heuristic

Distance &

Consistency

Helpful Actions end conditions. They are called potential envelopes since (at
Totally the moment) there is no effort to find out if there are any
Ordered PlanSCHEDULING content actions that must go in these envelopes.

As stated, where there are potential envelopes, there is the
v potential to produce an unschedulable plan. To avoid this,
envelope action are split into two separate actions, a start
action containing the start conditions and effects, and an end
action containing the end conditions and effects. Invariants
become conditions of the end action, and, if not achieved by
the start effects, also of the start action. An end action cannot
be applied until its corresponding start action is in the plan,
and a plan is not valid until all the start actions in the plan
also have their corresponding end actions in the plan.
. , ) On putting a start action into the plan, a mini-scheduler
Figure 1: Architecture Overview of CRIKEY is associated with this action. This mini-scheduler consists
of a Simple Temporal Network, a set of content actions (ini-
tially empty) and a set of orderings between these actions.
straints. For a> or > resource constraint, just enough pro- 1he mini-schedulers use the same algorithms as the main

ducers of that resource are ordered before it, assuming thatScheduling part of CRIKEY. Any (content) actions which
all consumers that preceed it in the totally ordered plan, oc- @€ now considered, must be checked against this mini-
cur before it in the partially ordered plan. The same is true Scheduler to ensure that if they must go in the envelope,
for < or < conditions, apart from the roles of consumer and the STN is consistent (that is to say that there is enough
producers are reversed. Whilst this is conservative, it must ime to execute the action). If not, then the action is not
be sound as the totally order plan is correct (at worst, the considered applicable, and that branch is removed from the
partial order will be the same as the total order). search space. When the envelope’s end action is chosen, the

The next section details how it is impossible to produce Mini-scheduler is then discarded. Figure 2 is pseudo-code
an unschedulable plan. for the m|n|—scheduler. As can be seen, invariants are pro-

tected whilst an envelope’s start has been chosen but not its

end action. No other action may delete these invariants until
that action has completed.

Partial
Ordered
Plan

Temporal Plan

Interactions

In cases where the planning and scheduling interact, precau- . .
tions must be made to ensure that a plan is not produced Competition Domains
which is unschedulable. This can happen where the actions Unfortunately, none of the domains in the 2004 competition
musthappen in parallel (as opposed to the more common in their purest form (that is, without the new features com-
case where actionsanhappen in parallel if they do notin-  piled out) contained any envelopes (i.e. no actibad to
terfere). That is to say, one or more actions (called “con- happen in parallel) and so in all problems the planning and
tent actions”) must happen whilst another (the “envelope ac- scheduling were relatively loosely coupled. This means that
tion”) is executing. If there is not enough time to execute the CRIKEY could not show off its mini-scheduling capabilities
contents during the envelope, then an unschedulable plan isto cope with these situations. It is hoped that after the com-
produced. petition, the other competing planners will become available
These cases are detected in advance by looking for “po- and it will be possible to compare them with CRIKEY on
tential envelopes” - actions which allow other actions only domains which do contain such situations.
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1. CheckA4,.,,q are satisfied. If not, return false.

2. CheckAy.; do not delete invariants in the list of invari-
ants. If not, return false.

3. If Ais a start of an envelope

(a) Create a new mini-scheduler fdr and add to list of
mini-schedulers.

(b) Add A’s invariants to the list of invariants.
4. Else If Ais an end of an envelope

(&) RemoveA’s mini-scheduler from the list of mini-
scheduler.

(b) Removed’s invariants from the list of invariants.
5. For Each envelop# currently open

(a) Get orderings for in E.

(b) If no orderings, return true.

(c) Add orderings to the STN.

(d) Return the consistency of the STN.

Figure 2: Algorithm to decide whether an actidns applic-
able

Envelopes were present in versions of the domains where
timewindows and deadlines had been compiled down from
PDDL2.2 to PDDL2.1. These envelopes are present in the
newly created dummy actions to enforce the constraints and
lasted the length of the plan. As the envelope lasts the length
of the plan, the mini-scheduler for each dummy action is
active throughout the planning process. This is highly in-
efficient and not what the mini-schedulers are designed to
solve. However, it still makes sure that an unschedulable
plan is not passed to the scheduler.

Since there were no domains particular to CRIKEY’s de-
signed purpose and strengths, not much development of
CRIKEY was performed whilst the competition was run-
ning, except to correct bugs in the code and parser. It is
thought that not being able to handle ADL was not such
a disadvantage as CRIKEY would probably have only per-
formed an equivalent compilation internally.
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Abstract

TP4 and HSP}, are optimal temporal planners, though they as-
sume a semantics for temporal planning problems that differs
somewhat from the PDDL2.1 standard. Both use regression,
and automatically extracted admissible heuristics to inform
search: their only difference is that HSP} invests more time
in computing a more accurate heuristic. Two new tricks were
added to the planners to cope with some domains in the 2004
planning competition. The more interesting of those is a two-
stage optimization scheme which speeds up planning in do-
mains with highly uneven action durations.

Introduction

The TP4 and HSP}, planners find temporal plans for STRIPS
problems with durative actions. The plans found are optimal
w.r.t. makespan, i.e. the total execution time of the plan, and
the planners are also able to ensure that the plan does not
violate certain kinds of resource constraints.

TP4 participated in the 2002 planning competition, where
it may be said to have ended up second-to-last (although it
rightfully deserved the last place)'. The version of TP4 par-
ticipating in the 2004 competition is a reimplementation of
essentially the same planner. The new implementation, hav-
ing been designed to be a flexible experimental platform for
variations of the basic planning algorithm (such as HSP})
rather than an efficient implementation of a single algorithm,
is somewhat slower than the earlier version.

This paper focuses on two points: First, the semantics
that TP4/HSP} assume for planning problems (which dif-
fers from the PDDL2.1 standard) and second, new tricks that
were added to the planners to address problems encountered
in the competition domains.

The Semantics of Planning Problem
Specifications

Put somewhat pointedly, TP4 does not accept PDDL2.1 in-
put’. For practical purposes it uses the same syntax, but

durative actions and fluents are interpreted in a maner that
differs from the PDDL2.1 specification (Fox & Long 2003).

'This is my interpretation: Such a strict ordering of planners
was not an official result of the competition.
The same applies to HSP.
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Durative Actions

The semantics that TP4 assumes for durative actions are es-
sentially those introduced by Smith and Weld (1999) for
their TGP planner.

An action a has preconditions pre(a), positive (added)
and negative (deleted) effects add(a) and del(a), which are
all sets of atoms, and a duration dur(a) > 0. Preconditions
that are not deleted by the action are termed persistent pre-
conditions, i.e. per(a) = pre(a) — del(a). For action a to
be executable over a time interval [t, ¢ + dur(a)], atoms in
pre(a) must be true at ¢, and atoms in per(a) must remain
true (i.e. not interfered with) over the entire interval. Effects
of the action take place at some point in the interior of the
interval, and thus can be relied on to hold at the end point.
This respects the “no moving target” rule of PDDL2.1, but
in a different way: instead of requiring plans to explicitly
separate an action depending on a condition from the effect
that establishes the condition, TP4’s semantics requires that
change takes place in a time interval.

TP4’s interpretation makes durative actions strictly less
expressive than in PDDL2.1, where effects can be specified
to take place exactly at the start or end of an action. In par-
ticular, it does not support actions that make a condition true
only during their execution (i.e. add the atom at the start of
the action and delete it again at the end), which prevented
TP4 from solving any of the problems with timed initial lit-
erals, since the compilation of those makes use of this type
of effect.

Resources

TP4 does not deal with fluents but with resources, specifi-
cally resources of two kinds: A reusable resource is one that
actions “borrow” some quantity of during their exectuion,
but the total amount of the resource (free and in use), does
not change over time. A consumable resource is one that
each action may either consume or produce some quantity
of, thus changing the total (and free) amount of the resource
over time>.

Resources of both kinds can be modelled in PDDL2.1 us-
ing fluents and certain “patterns” of action conditions and

3This is similar to what is called a reservoir by Laborie
(2001). A reservoir, however, can be both borrowed and con-
sumed/produced.
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effects, and TP4 identifies resources in a problem by look-
ing for these patterns. For example, an action with the ef-
fects (at start (decrease f m)) and (at end
(increase f m)), and the condition (over all
(>= f 0)), uses the fluent f as a reusable resource*.
However, in PDDL2.1 it is possible to express the same re-
source restriction also in other ways, e.g. by having actions
that use the resource increase f at start, decrease it at end and
require that f < F', for some static fluent F' representing the
capacity of the resource. TP4’s resource finding procedure
had to be extended with several new patterns to correctly
identify resources in the umt s competition domain.

TP4 requires consumable resources to be decreasing, i.e.
actions may only consume (not produce) them?. It also does
not allow a resource to be used both as a reusable and a
consumable. Among the competition domains involving re-
sources, only the settlers domain failed to meet these
restrictions.

TP4/HsP; Planning Algorithm

TP4 searches for plans using temporal regression, i.e.
backchaining from the problem goals over actions that are
positioned in time so that they form a schedule, not just a se-
quence. The search is done using IDA*, including standard
enhancements such as cycle checking and a bounded trans-
position table, and guided by an admissible heuristic, which
is derived from the problem specification. The planner is
described in more detail in (Haslum & Geffner 2001).

HSP; is very similar: the only difference is that it invests
more time in computing a more accurate heuristic before the
search. It does so by solving a relaxed version of the prob-
lem and recording information discovered in the search. TP4
computes the H? heuristic (which assigns an estimated cost
to all possible sets of at most 2 subgoals, see Haslum and
Geffner (2001) for the definition of H™, form = 1,...).
HSP} does likewise, but improves on this by computing part
of the H3 heuristic (assigning a better estimated cost to some
sets of 3 or fewer subgoals) by searching the AND/OR graph
corresponding to the definition of the H2. The details are
described in a forthcomming paper®.

In the competition domains, TP4 and HSP} showed lit-
tle difference in performance, with two exceptions: in the
umt s domain, HSP} did a little better than TP4, while in the
airport domain, it was much worse.

New Trix

Apart from the already mentioned extension to the resource
finding procedure, TP4 learned two new tricks during the
competition’:

“TP4 also allows actions to use atoms as unary reusable re-
sources, identified by a similar pattern.

STf both consumption and production of the same resource are
allowed, and actions may test if a resource is depleted (without
changing it), the planning problem becomes undecidable (Helmert
2002). Whether this is the case also when such “resource tests” are
disallowed is not completely clear.

®Submitted to ECAL

7 Again, the same applies to HSP.
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Irrelevance Detection

Detection (by standard reverse unreachability) and removal
of irrelevant atoms and actions helped speed up the planner
on some problems in the airport domain, but was used
for all domains since the time overhead for this analysis is
quite small.

Two-Stage Optimization

When using IDA* with temporal regression, the cost bound
tends to increase by the gcd (greatest common divisor) of
action durations in each iteration, except for the first few it-
eration®. In the satellite domain, durations differ by
large amounts and are also specified with a high resolution
(e.g. one action may have a duration of 7.89 and another a
duration of 122.03) which means the gcd is very small (on
the order of 1%0). Combined with the fact that the differ-
ence between the initial heuristic estimate of the solution
cost (makespan) of a problem and the actual optimal cost is
in this domain often large, this results in an almost astro-
nomical number of IDA* iterations being necessary to find
the optimal solution.

To counter this problem, the following “two-stage opti-
mization” scheme was introduced:

1. First, all action durations are rounded up to the nearest
integer.

2. Then, the resulting problem is solved using the standard
TP4 method. The cost (makespan) of the solution is an
upper bound on the optimal solution cost of the original
problem.

3. Finally, action durations are restored to their original val-
ues, and a branch-and-bound search, starting from the
known upper bound, is used to find the optimal solution.

The solution found in step 2 is always a valid solution
to the original unmodified problem®. The solution cost
(makespan), however, may be greater than the optimal so-
lution cost for the unmodified problem. Thus it is an upper
bound. The branch-and-bound search in step 3 is carried
out on the unmodified problem (with the original, fractional,
action durations), so the final solution found in this search
is the optimal solution to the original problem. Thus, two-
stage optimization does not compromise the optimality of
the planner overall.

Rounding action durations up to integer values increases
their ged to at least 1 (a substantial improvement from ﬁ),

8TP4 treats action durations as rationals: by the ged of two ra-
tionals a and b is meant the greatest rational ¢ such that a = mc
and b = mnc for integers m and n. Note that the planner does
not compute the ged of action durations and use this to increment
the cost bound. The bound is in each iteration increased to the
cost of the least costly node that was not expanded due to having a
cost above the bound in the previous iteration (i.e. standard IDA*).
That this frequently happens to be (on the order of) the gcd of ac-
tion durations is an (undesirable) effect of the branching rule used
to generate the search space.

°This fact is due to the semantics that TP4 ascribes to durative
actions. It does not hold for arbitrary problems interpreted accord-
ing to the PDDL2.1 semantics.
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so the search in step 2 is much faster than what an IDA*
search on the unmodified problem would be. Since the
branch-and-bound search does not suffer from the problem
of small gcd’s and the upper bound obtained from step 2
tends to be quite close to the optimal cost, step 3 is rela-
tively quick, and the total time less than that taken by plain
TP4.

In principle, there seems to be no reason why in step /
action durations could not be rounded up to produce a gcd
greater than 1, even going as far as assigning unit duration
to all actions (essentially turning the problem into a non-
temporal problem). Whether this would make the two-stage
optimization scheme more effective is a topic that may be
investigated in the future.

Among the competition domains, two-stage optimization
was effective only in (temporal variants of) the satellite
domain, and it was not used for any other domain.
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Abstract

Fast Downward is a propositional planning system based on
heuristic search. Compared to other heuristic planners such
as FF or HSP, it has two distinguishing features: First, it is
tailored towards planning tasks with non-binary (but finite
domain) state variables. Second, it exploits the causal de-
pendency between state variables to solve relaxed planning
problems in a hierarchical fashion.

Fast Downward is a planning system based on heuristic
state space search, in the spirit of HSP or FF (Bonet &
Geffner 2001; Hoffmann & Nebel 2001). It makes use of
the causal graph (or CG) heuristic, introduced in an ICAPS
2004 paper (Helmert 2004). In this extended abstract, we
aim at providing a high-level overview of Fast Downward,
emphasizing the features that are not described in the CG
article. While the CG heuristic was introduced for pure
STRIPS domains, Fast Downward is capable of dealing with
the complete propositional, non-temporal part of PDDL. In
other words, it handles arbitrary ADL constructs and derived

predicates (axioms).
Whistler e

Squamish e
Vancouver O

Figure 1: A simple planning task. Get the ICAPS participant
p to Vancouver, using the taxi t.

The key feature of the CG heuristic — and the origin of
Fast Downward’s name — is the use of hierarchical decom-
position to solve relaxed planning tasks. To illustrate this,
consider the planning task in Fig. 1: The objective is to move
the ICAPS participant p from Whistler (W) to Vancouver
(V), using a taxi (¢) initially located at Squamish (S).

The CG heuristic solves this problem hierarchically. The
high-level goal is to change the state of the participant from
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Figure 2: Domain transition graphs for the participant p
(left) and taxi ¢ (right).

“at Whistler” to “at Vancouver”. The easiest way to do this
is to board the taxi at Whistler and debark at Vancouver; at
this point we do not care that these actions are not immedi-
ately applicable. This plan is found by looking at the ICAPS
participant’s domain transition graph, a directed graph de-
picting the ways in which p can change locations (Fig. 2).
The different locations or states of p form the nodes of the
graph, while the arcs correspond to operators affecting these
states, annotated with their preconditions.

To estimate the cost of the “high-level plan” p : W ~»
T ~» V, the heuristic solver inserts steps to satisfy the pre-
conditions of the two operators by recursive invocations of
the same algorithm. The transition p : W ~» T requires the
taxi to be at Whistler, as evidenced by the labeling of that
arc in p’s domain transition graph. So we recursively find
a (one-step) plan to move the taxi from its initial location
Squamish to Whistler. Because there are no conditions on
the transitions of the taxi (Fig. 2), there is no further recur-
sion. We have thus computed that the cost of changing the
state of the participant from W to T is 2, counting one action
for the transition itself and one for the recursively calculated
set-up cost. Similarly, we compute that the second transition
p: T ~ V is 3, because the taxi is now located in Whistler
and thus needs two actions to get to Vancouver, in addition
to the one action required to move p out of the taxi. Adding
the transition costs together, the CG heuristic approximates
the goal distance as 5 = 2 + 3.

Observe that state transitions of the passenger are condi-
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tioned on the state of the taxi, while the converse is not the
case. We say that state variable p is causally dependent on
state variable ¢. The set of causal dependencies of a planning
tasked defines the causal graph of that task. Hierarchical de-
composition is most suited to planning domains with acyclic
causal graphs. In fact, the CG heuristic can only be calcu-
lated for tasks with acyclic causal graphs, and hence Fast
Downward’s heuristic estimator breaks causal cycles for the
purposes of the heuristic estimator, by ignoring (some) op-
erator preconditions. Contrast this relaxation to HSP’s ap-
proach of ignoring (some) operator effects.

We hope that this small example provides the reader with
some intuition of the basic ideas of the CG heuristic. Again,
we point to the reference for a detailed exposition (Helmert
2004). In the following, we discuss the overall structure of
the Fast Downward planner, emphasizing aspects that go be-
yond the STRIPS planner described in the conference paper.

Structure of the planner

Fast Downward currently consists of three independent pro-
grams:

1. the translator (written in Python),
2. the preprocessor (written in C++), and
3. the search engine (also written in C++).

To solve a planning task, the three programs are called in se-
quence; they communicate via text files. We have found that
this clear separation facilitates simultaneous development of
the planner by several people in its current prototype stage.
Of course the current state of affairs leads to some inefficien-
cies, especially when solving easy or moderately difficult
planning tasks. For hard tasks, runtime is typically domi-
nated by the search engine.

Translator
The translator has the following responsibilities:
o Compiling away (most) ADL features.
e Grounding the operators and axioms.

e Converting the propositional (binary) representation to
one with multi-valued state variables.

It is commonly known that some features of ADL can
be compiled away easily, i.e. without significantly increas-
ing the problem representation, while others cannot (Nebel
1999). However, in the presence of axioms, all ADL con-
structs except for conditional effects can be translated to
STRIPS quite easily.

Fast Downward applies the following transformations, in
order, to simplify the problem representation:

e Translate implications to disjunctions and translate all
conditions to negation normal form (NNF).

e Compile away universal quantifiers in conditions.
e Translate conditions to prenex normal form.

e Translate the quantifier-free part of conditions into dis-
junctive normal form.
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e Split operators or axioms with disjunctive conditions into
several operators or axioms, and split conditional effects
with disjunctive conditions into several effects.

All these transformations are fairly basic, except maybe
for the elimination of universal quantifiers explained now.
Using the equivalence Vxy = —Jx—, the translator intro-
duces a new axiom for 3x—¢ and replaces the universally
quantified condition Yz by the literal -new—-axiom(V),
where V is the set of free variables in Jz—.

For example, the b1l ocked axiom in the Promela domain
contains the condition (ignoring types):

Vt(Vs'~trans(q,t,s,s') Vblocked-trans(p,t)).

This is translated to the condition —new-axiom(p,q,s),
where new—-axiom(p, ¢, s) is defined as:

Jt—(Vs'~trans(q,t,s,s") Vblocked-trans(p,t)),
which is translated to NNF, resulting in:
Jt(Is’trans(q,t,s,s") A "blocked-trans(p,t)).

After all transformations, all conditions are essentially
simple conjunctions of literals (the remaining existential
quantifiers can be considered action, axiom or effect param-
eters), so the resulting planning task is expressed in STRIPS
with negation plus universal conditional effects and axioms.

For such planning tasks, efficient grounding is compar-
atively easy. Following the idea of Mips (Edelkamp &
Helmert 1999), we avoid instantiating operators which can
never be applied by first computing the set of propositions
which are reachable in a relaxed exploration, ignoring neg-
ative conditions and effects. This amounts to the evaluation
of a set of Horn logic rules derived from the actions and ax-
ioms. For example, the above axiom corresponds to the rule

new-axiom(p,q,s) :— trans(qg,t,s,s’).

The final translation step consists of replacing the set of
binary state variables obtained by grounding with a smaller
set of finite domain state variables capturing the same in-
formation. This is done by synthesizing invariants of the
planning task, again using the algorithm of Mips.

To illustrate this, the variables p and ¢ of our earlier exam-
ple task are derived from the original PDDL representation
by use of invariants. Specifically, the invariant

341 : taxi-at(l),

justifies replacing the three binary variables taxi-at (V),
taxi-at (S) and taxi-at (W) by the variable ¢ with do-
main {V, S, W}.

Preprocessor
The preprocessor is responsible for:
e Computing the causal graph of the planning task.

e Computing the domain transition graphs for each state
variable.

e Computing the successor generator, a data structure that
supports efficiently computing the successor states of a
world state. (We do not discuss the successor generator in
detail.)
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Computing the causal graph is straight-forward: Variable
A depends on variable B iff there is an operator (axiom) with
A as an effect (consequence) and B as a condition or other
effect. One notable optimization is employed at this point:
All variables which are not mentioned in the goal and on
which the goal does not depend directly or indirectly can be
eliminated. For example, in the PSR domain, all instances
of the upst ream axiom for which the first parameter is not
a circuit breaker may be safely removed.

As noted before, an acyclic causal graph is required for
the CG heuristic. Therefore, for the purposes of the do-
main transition graphs, we compute an acyclic skeleton of
the causal graph, i.e. a maximal acyclic subgraph. Cycles
are broken by removing the weakest edges; this means that
every dependency is weighted according to how often it oc-
curs in the operators, and the edges with least weight are
removed iteratively, until no cycle remains.

The central part of the preprocessor is the computation of
the domain transition graphs. The domain transition graph
of a variable contains arcs for all operators or axioms af-
fecting this variable. For example, the graph for p in Fig. 2
contains an arc from V' to T because there exists an operator
with precondition p = V and effect p = T', corresponding
to the action of boarding the taxi in Vancouver. The arc is
annotated with the condition ¢ = V' because the operator
requires the taxi to be in Vancouver as an additional pre-
condition. We would omit this condition if the causal link
between p and ¢ were not part of the acyclic skeleton of the
causal graph computed earlier. Thus, this is the part of the
planner where some preconditions get ignored.

The reference (Helmert 2004) explains the details of do-
main transition graph construction for basic STRIPS-like
operators; we note that the conditional effects present in the
more general case do not lead to complications because do-
main transition graphs deal with operators one effect at a
time, and for unary operators effect conditions can safely be
considered part of the operator precondition.

Search Engine

After so much preprocessing, the actual search algorithm is
not very mysterious. Fast Downward uses greedy best-first
search, always expanding the node with the best heuristic
estimate. The heuristic is computed from the domain transi-
tion graphs as follows: The goal distance of a state is taken
to be the sum of the costs for all necessary changes of vari-
ables. The cost for changing the value of one variable V'
from v to v’ is the sum of the costs for all transitions of V'
on the shortest path from v to v’ in V’s domain transition
graph, computed using Dijkstra’s algorithm.

The cost for traversing a single arc in the domain transi-
tion graph — the arc weight in Dijkstra’s algorithm — is one
plus the set-up cost of the transition, the sum of the (recur-
sively computed) costs for achieving all necessary precondi-
tions according to the arc label.! This follows the informal
description of the CG heuristic in the introduction.

'f the arc corresponds to the derivation rule of an axiom, not to
an action, then the weight is just the set-up cost, without adding 1.
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Helpful Actions

As a further enhancement, Fast Downward incorporates the
CG counterpart of FF’s helpful actions: The planner collects
all operators that correspond to domain transition graph arcs
which contribute to the heuristic estimate of the given state.
It then checks which of these operators are applicable in the
current state. These form the set of helpful actions in that
state. This set can be empty although the heuristic estimate
is finite, because domain transition graphs do not respect all
operator preconditions, as discussed before.

The overall best first search algorithm integrates helpful
actions by maintaining two separate open lists; all states are
first inserted into the first open list. When a state from this
list is expanded, the “helpful” successors are generated and
the state is inserted into the second open list. When a state
from the second list is expanded, its “non-helpful” succes-
sors are expanded. The search control always selects that
open list for expansion which has generated fewer search
states so far. This means that if an average state encountered
during search has 4 helpful and 40 other successors, the first
open list is selected ten times out of eleven, thus biasing the
exploration towards helpful actions.

Fast Diagonally Downward

As a final twist, we have also implemented a modified ver-
sion of the search engine which combines CG heuristic and
FF heuristic. This is based on the observation that CG and
FF heuristic perform badly in different planning domains
(Helmert 2004). Combining the forward and downward
thrust by a simple vector addition, we have called this variant
of the Fast Downward planner Fast Diagonally Downward.

Fast Diagonally Downward’s search engine computes
both the CG and FF heuristic for each state, as well as mak-
ing use of helpful actions of both kinds. It uses separate
open lists for the two heuristics, alternately expanding the
node preferred by the FF estimate and the node preferred by
the CG estimate. Newly generated states are always added
to both open lists, making the approach different to simply
running two planners in parallel. The hope is that the heuris-
tics can lead each other out of their respective local minima,
and indeed in some domains the combined approach works
better than either of the original heuristics.
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SATPLANO4: Planning as Satisfiability

Henry Kautz
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SATPLANO4 is a updated version of the planning
as satisfiability approach originally proposed in (Kautz
& Selman 1992; 1996) using hand-generated transla-
tions, and implemented for PDDL input in the black-
box system (Kautz & Selman 1999). Like blackbox,
SATPLANO4 accepts the STRIPS subset of PDDL and
finds solutions with minimal parallel length: that is,
many (non-interferring) actions may occur in parallel
at each time step, and the total number of time steps
in guaranteed to be as small as possible.

Also like blackbox, SATPLAN works by:

1. Constructing a graphplan-style (Blum & Furst 1995)
style planning graph up to some length k;

2. Translating the constraints implied by the graph into
a set of clauses, where each specific instance of an
action or fact at a point in time is a proposition;

3. Using a general SAT solver to try to find a satisfying
truth assignment for the formula;

4. If the result is unsat or time out, increment k£ and
repeat;

5. Otherwise, translate the solution to the SAT problem
to a solution to the original planning problem;

6. Postprocess the solution to remove (some of the) un-
necessary actions.

The final step is useful because the SAT translation
of the planning graph does not guarantee that every
action proposition that is true in the solution is actually
needed in order to achieve the goals of the original plan.

SATPLANO4 supports four different encoding styles,
“action-based”, “graphplan-based”, “skinny action-
based”, and “skinny graphplan-based”, based on the
classes of clauses included in the encoding. Classes of
clauses are:

1. An action implies its preconditions.

2. A fact implies the disjuction of the actions that have
it as an effect (including “no op” actions) at the pre-
vious time slice.

Copyright (© 2004, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.
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3. An action implies each of the disjunctions of the ac-
tions at the previous time slice that add each of its
preconditions.

4. Actions with conflicting preconditions and effects are
mutually exclusive.

5. Actions for which mutual exclusion can be inferred
using graphplan’s constraint propagation algorithm
are mutually exclusive.

“Graphplan-based” encodings use classes (1) and (2),
while “action-based” encodings use class (3). “Skinny”
encodings include class (5) while non-skinny encodings
include both (5) and (6).

In general the action-based skinny encoding gives the
most robust performance, simply because as the small-
est in terms of both variables and clauses it is least likely
to result in a formula that is too large to fit into main
memory. (Satisfiability testing and virtual memory are
an unhealthy combination.)

The single most important difference between black-
box and SATPLANO04 is the SAT solvers used. Black-
box included the original graphplan (non-translation
based) search engine, the local-search SAT solver walk-
sat (Selman, Kautz, & Cohen 1994), the forward-
checking DPLL-based solver satz (Li & Anbulagan
1997), and the clause-learning DPLL-based solvers rel-
sat (Bayardo & Schrag 1997) and zChaff (Moskewicz et
al. 2001).

By contrast, SATPLANO4 uses a single highly opti-
mized DPLL-based solver called “siege”, that was devel-
oped by Lawrence Ryan as part of his research at Simon
Fraiser University under the direction of Prof. David
Mitchell. Linux binaries of siege can be downloaded
from  http://www.cs.sfu.ca/ loryan/personal/.
We thank Lawrence Ryan for permission to incorporate
siege in SATPLANO4.

Siege, like relsat and zChaff, performs -clause-
learning (that is, inferring new clauses at backtrack
points), and like zChaff uses optimized “watched lit-
eral” data structures for managing large clause sets
efficiently. Beyond that it appears to incorporate a
number of other optimizations that make it particu-
larly well-suited for the planning as satisfiability ap-
proach. In our initial informal tests siege signifi-
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cantly outperformed all the other solvers mentioned
above. Later this summer we will post detailed
comparisons of the different SAT solvers on plan-
ning formulas on our planning as satisfiability web
page, http://www.cs.washington.edu/homes/kautz
/blackbox/.

The PDDL parser in SATPLANO4 is considerably
more robust than the one in blackbox, but it does not
yet handle any non-STRIPS features other than types,
such as derived effects and conditional actions. We plan
to extend SATPLANO4 to handle these and other fea-
tures in time for the 2005 planning competition.
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Tilsapa — Timed Initial Literals Using SAPA
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System Abstract

This system is an offshoot of SAPA[1] developed by Binh Minh Do and Subbarao
Khambampati. The following diagram represents the architecture of SAPA.

Select state f can have both Cost
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Extract relaxed
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Return o.c
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[1]Architecture diagram of SAPA
A time stamped state can be described as a quintuple S = (P, M, I1, Q, t) where
P = Set <pj,t;> of predicates pi and the time of their last achievement # < t.
M = Set of functions representing resource values.
IT = Set of protected persistent conditions
Q = Queue of future events
T = Time stamp of S [1]

46


mailto:bharat@cs.iitm.ernet.iin
mailto:you_yes@engineer.com
edelkamp
  46


e Timed Initial Literals are implemented using SAPA by the following method
o Include them in the event queue at the outset (Plan request)
o Include them in the predicate set P before the state is expanded by applying
new actions
e Derived predicates can be introduced before any action is considered into the set of
Predicates, which are valid for the current state.
e Constants are included with each plan request as initial predicates.

The major bottleneck is the heuristic computation and propagation of the cost where
e it is assumed that each predicate can only be caused by an action.
e the heuristic value of the state is a function of
o Cost of the relaxed plan from this state to the goal state.
o Makespan of the relaxed plan.

We are currently working on optimizing the cost propagation process after taking the timed
initial literals into consideration. The system is still under implementation.

References:
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Introduction

Optop1 is an estimated-regression planner, meaning
that it is a “state-space planner” that is guided by a
heuristic measure of how close a situation is to satisfy-
ing a goal, and how good it is according to an objective
function. Research on Optop is focused more on deep
reasoning about situations and transitions than on raw
performance.

Instead of talking about “state space,” I prefer to
characterize the search space of Optop as the set of
plan prefizes, that is, sequences of actions that are ex-
ecutable starting in the initial state. Such a sequence
generates a unique situation, called the current situa-
tion for that prefix.

Heuristic Search Using
Estimated-Regression Graphs and
Objective Functions

Optop decides which plan prefix to work on next us-
ing a heuristic inspired by means-ends analysis (Ernst
& Newell 1969). For each plan prefix, it constructs a
regression-match graph that is a simplified prediction of
how that goal might be achieved starting in the current
situation for a given plan prefix. The graph is con-
structed by maxmatching the goal against the current
situation, which produces a substitution (called a maz-
imal match) that binds the variables in the goal so as
to make as many of its conjuncts true as possible. The
remaining conjuncts, the differences left by the max-
match, become subgoals. For each literal in differences,
Optop finds all the actions, processes, or implications
that could make it true. Each has some kind of precon-
dition that is maxmatched against the current situation,
giving further differences. As this process is continued,
a tripartite graph emerges, each of whose nodes is of
one of the following three types:

1. An L-node: A literal occurring as differences in a
maxmatch.

Copyright (© 2004, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

L This looks like an acronym for something; ordered? op-
erator? tops? How is it syllabified, as Opt-op or Op-top?

2. An effort-spec: An L-node plus numerical constraints
on its free variables. Numerical constraints can’t be
handled by regression, but must be postponed and
satisfied by a special numerical module at the appro-
priate time.

3. A reduction: A record of the application of a “regres-
sion method” to an effort-spec. A typical regression
method corresponds to an action definition, and spec-
ifies sufficient conditions for that action to cause each
of its possible effects. (Some of the other kinds are
discussed below.) These conditions are maxmatched
to derive a set of differences, each of which is an effort-
spec in the graph.

Each effort-spec may have several reductions, and
each reduction has a set of precondition effort-specs
which are sufficient to ensure that the action, process,
or implication associated with the reduction will cause
the L-node of the effort-spec to be true. (Actually, re-
ductions and maxmatches are cached on L-nodes; when
an effort-spec for an L-node, is built, Optop copies the
reductions, adds the numerical constraints if any, and
verifies that they are satisfiable.)

L-nodes and effort-specs are “uniquified”; that is, if
an equal L-node already exists, it is used instead of
a new one being created. That means the regression-
match graph for a planning problem tends to be much
smaller than its situation space.

The graph yields a rough estimate of the difficulty of
the problem, obtained by counting the actions in a sub-
tree of the graph that is minimal in a sense explained
in (McDermott 1996; 1999). However, many planning
problems include a specification of an “objective func-
tion” to be minimized. Optop finds linearizations of
the regression-match graph that then give rise to plau-
sible projections of the rest of the plan. The result is
a collection of feasible actions and speculative versions
of the final situation that might follow from them, and
Optop evaluates the objective function in those situa-
tions to produce estimates of the quality of alternative
extensions of the current plan prefix (McDermott 2003).
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Expressivity
In addition to actions, Optop can reason about au-
tonomous processes, which run whenever their condi-
tions are true without the need for planner intervention.
The planner can plan to bring these into existence by
making the condition true, or can take advantage of
processes defined as part of the problem.

Optop can handle all of ADL (Pednault 1989), in-
cluding universally-quantified preconditions. It uses the
Screamer system (Siskind & McAllester 1993) to solve
numerical constraints, especially those that arise in con-
nection with predicting when processes will cause some-
thing to become true.

The reason for Optop’s versatility is that its rea-
soning is closely tied to complete descriptions of sit-
uations, unlike partial-order planners (Weld 1994) and
Graphplan-style planners (Blum & Furst 1997), which
reason about goal-satisfaction links, mutual-exclusion
relations, and the like without tying them to any partic-
ular situation. Generating the regression-match graph
requires reasoning backward from the goal to the cur-
rent situation, and can use any reasoning technique,
domain-dependent or -independent, without worrying
about enough information is known about that situa-
tion. (Of course, that is not the only consideration;
Optop is no better than other Strips-style planners in
doing regression involving geometrical reasoning.)

Once an action is chosen to explore, Optop typically
generates a new current situation following that action.
However, if autonomous processes are active, the next
situation is the one that occurs when those processes
cause a discrete change of some kind. Again, just about
any computation that projects the sequelae of the cur-
rent state of affairs is easy to exploit.

In addition to its heuristic evaluator, a planner must
also have a search strategy. Optop uses best-first search
as long as its heuristic is sharply differentiating among
alternative plan prefixes. When too many accumulate
that seem to be of about the same quality, it switches
to a strategy of “hill climbing with random restarts.”
In this mode, it always extends the plan prefix with
the action that looks the best locally; that is, if it has
to choose among actions it with Aj,..., Ag, it picks
an A; that dominates Aq,...,A,, without regard to
previously generated possibilities. If it reaches a point
where there is no feasible action that leads to a new
situation, it makes a random choice among all the plan
prefixes it has generated and resumes hill climbing from
there.

Changes for the Competition

To illustrate how easily changes are made to Optop,
here’s an account of recent changes to the system.?
The ability to handle universally-quantified precon-
ditions was added to Optop for this year’s IPC. An or-
dinary precondition set such as (and (Q ?y) (P a ?7y))

20ptop is written in Lisp; I can’t imagine how it could
evolve so quickly if it were written in any other language.
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is handled during maxmatching by finding values for ?y
that make either (Q ?y) or (P a ?y) true. The other
precondition, with ?y substituted away, becomes a dif-
ference to be reduced. Now suppose we have pre-
conditions (and (Q ?y) (forall (z) (if (R 7y) (P ?y
z)))). Suppose ?y=b make (Q ?y) true. Then the re-
maining differences are all the literals whose unprov-
ability produces a counterexample to the universal. A
counterexample is an instance of (and (R z) (not (P b
2))), which can be produced by finding z’s such that
(R 2) is provable and (P b 2) is not; each such (P b 2)
becomes a difference. Writing and plugging in the code
for this mechanism was a relatively simple task.

Note that the maxmatcher must find values for 7y
before considering the universal. That’s because there
is no way to enumerate all the values y that make
(forall (z) (if (R y) (P y z))) provable, or all those
that make it unprovable. (Provability is used as a
stand-in for truth, because PDDL relies on a closed-
world assumption: if a proposition can’t be proved, it is
taken to be false.) The deductive system built-in to Op-
top distinguishes between queries with no answers and
queries with an unknown number of answers that might
be handled if more of their free variables are bound.
This turns out to be a very useful feature with a va-
riety of uses, one of which is to decide how to order
preconditions during maximal matching.

For the competition, PDDL was extended in two fur-
ther ways: with derived predicates and timed initial
literals. Optop already had derived predicates, which
it used in the following way: Suppose, in the previous
example, there was an axiom

(forall (x)
(<= (@Q ?y)
(exists (v)
(and (R v ?y) (R 7y v)))))

The existence of this axiom gives the maxmatcher an
extra degree of freedom. Instead of having to classify
(Q a) as a difference, it can also find a v such that (R
v a) and make (R a v) a difference. The term derived
predicate is just another name for a predicate defined
by a single backward-chaining axiom.

Unfortunately, expanding axioms this way is not a
good idea unless the axioms are stratified, meaning that
there is no path from a predicate to itself through the
axioms in question. To handle those correctly, we have
to cope with the recursion by moving it out to the level
of the regression-match graph. That is, an unstrati-
fied axiom gives rise to a different kind of regression
method, in which the conditions lead immediately to a
conclusion with no action or process intervening. For
example, the unstratified axiom

(forall (x y)
(<~ (above 7x ?7y)
(exists (w)

3The “<-” indicates that the implication is to be used
for backward chaining.
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(and (above ?x w)
(above w 7y)))))

can be used to reduce an L-node (above a e) to (and
(above a ?w) (above 7w e)), which, after maxmatch-
ing, yields subgoal nodes such as (above b e) (if (above
a b) is true in the current situation). An L-node can
easily occur as a sub-sub-...-node of itself, but such
cycles are simply ignored when the regression-match
graph is used to produce and evaluate extensions of the
current plan prefix.

Performance

As shown in (McDermott 1999), although Optop spends
more time per search state than other planners, in some
domains it explores so few states that its run times are
comparable to highly optimized systems. On “well-
behaved” domains, its run times grow polynomially
with problem size.

There is a price to be paid for Optop’s flexibility.
The relaxed search space embodied in the regression-
match graph neglects destructive interactions among
actions (Bonet, Loerincs, & Geffner 1997; Bonet &
Geffner 2001). This neglect makes it difficult to solve
problems in domains in which a crucial condition can
be irreversibly deleted without that being discovered
until several more actions have been added to the plan.
(The classic example is the “Rockets” domain of (Blum
& Furst 1995).) On the other hand, realistic domains
are often more forgiving, and allow problems to be bro-
ken into loosely coupled subproblems that can be solved
by the sort of hill climbing described above.

Future Plans

My current research goal is to add hierarchical and con-
tingency planning to Optop. The former requires aug-
menting search states with information about hierar-
chical plans (i.e., canned plans from a library) that are
in progress. With this addition, the regression-match
graph will be built to handle posted but unsatisfied
goals from the current hierarchical plan —- the script.
An action that is already in the script will not normally
be proposed, unless a new instance is needed in order
to achieve a precondition of some other step.

Contingency planning is mainly a matter of running
the planner for various alternative scenarios. The me-
chanics are easy; the hard part is deciding when to stop
exploring contingencies.
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Combining Backwar d-Chaining with Forward-Chaining Al Search

Eric Parker

eri c@enmsyn. com

Semsyn is an automatic plan synthesis algorithm that
endeavors to fulfill the requirements of flexible, industrial-
strength, next-generation Al planning. Historically, Al
planning systems have not been viewed as practical
because users have had to be skilled artificial intelligence
practitioners. This is in part due to the fact that systems
built to solve large-scale, real-world problems traditionally
rely on optimisation and/or heuristic procedures. Further
difficulties with such systems are that optimisation
procedures are usually tailored around specific types of
problems, and that heuristic procedures are not guaranteed
to find a solution. The former approach produces planning
systems that are inflexible. The latter approach produces
planning systems that are unsuitable for industrial settings
that require critical systems.

Semsyn, on the other hand, performs an exhaustive search,
thereby retaining both completeness and flexibility. The
algorithm combines well-known forward-chaining search
(FCS) and backward-chaining search (BCS) strategies
from the Al literature (e.g. [5]). That is, the children-
generation function of FCS consists of producing the
domain actions that are applicable in the current State,
while the children-generation function of BCS consists of
producing the domain actions that are applicable to the
current set of subgoals. Intuitively, combining the
approaches seems to be the right move, since a desirable
outcome is that some subgoals (namely, the top-level
goals) are satisfied in some state. In any case, FCS and
BCS separately share the common fate of combinatorial
explosion, and Semsyn hopes to play the strengths of one
against the weaknesses of the other (in the spirit of [4]).
This is done by using a generalised BCS to compute the
causal link information, and by using the FCS states to
impose a total order on (some subset of) the causal links.
The causal links computation must be efficient enough so
as not to outweigh the benefit of their use.

Classical Backward-Chaining Search

Semsyn implements BCS in a breadth-first manner and
employs a sideways-information-passing technique that
provides an upper bound on the number of actions at each
level of the search. The Semsyn approach can be better
understood in relation to the classical BCS approach. The
root of the classical BCS search tree consists of the top-
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level problem goals. The root's children are those
domain actions that both achieve some top-level goal
and don't delete any of the top-level goals. Domain
actions that meet these requirements are said to be
applicable to the top-level goals, or more generally,
they are said to be applicable to the current set of
subgoals. The current set of subgoals for each child is
computed from its parent’s subgoals by regressing the
parent subgoals through the child [7]. The children-
generation function is then re-applied to each of these
nodes to produce the root's grandchildren, and so on.
When BCS is implemented in a breadth-first manner it
builds action sequences of increasing length, which
provides the opportunity to apply sideways-
information-passing techniques [1].

Generalised Backwar d-Chaining Sear ch

Semsyn's backward-chaining search (SBCS) differs
from BCS in two important ways: 1. Instead of having
a single root, the root level of the SBCS search tree (in
fact, a graph) has one node for each top-level goal.
The current set of subgoals for each of these "root"
nodes consists only of the node's top-level goal. Put
differently, SBCS builds partial plans, whereas BCS
builds plans. Since partial plans are, hopefully, shorter
than plans, the total amount of work is sometimes
reduced. 2. SBCS tries to pass information between
partial plans of equal length. The strategy relies on the
fact that the same domain action can be applied to
more than one set of subgoals at each level of the
graph. For every level L of the graph, and for every
domain action, if the action is applicable to n subgoal
sets of L, then create one child having two sets of
subgoals. One set of subgoals, u-subgoals, is the union
of all of the n subgoal sets, and the other set of
subgoals, X-subgoals, is the intersection of all of the n
subgoal sets. Note that since all of the n subgoal sets
are computed by regression through the same action, x-
subgoals may only be empty for a domain action that
has no precondition. Note also that not considering
secondary preconditions during the regression may
lead to incompleteness. For example, this occurs when
an action A with no precondition and a single
conditional effect E has an instantiated predicate as the
antecedent of E. In this case, A is functionally
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equivalent to an action B, where the precondition of B is
the antecedent of E, and B’s effect is the consequent of E.

Next, we generalise what it means for a domain action to
be applicable to a set of subgoals, since we now have a
double of subgoals. A domain action is applicable to a
subgoal double (u-subgoals, x-subgoals) if it both achieves
some subgoal in U-subgoals and doesn't delete any subgoal
in X-subgoals. Because of the generalization it is possible
to generate more children from a particular node than the
usual way, but the generalisation also has the special
property that it puts an upper bound on the number of
children generated for a particular level. In the worst case,
each level of the graph contains no more nodes than there
are domain actions (in the spirit of [2]). In and of itself,
the generalisation of subgoal sets is admittedly naive.
However, on the whole, it is instructive to try to convince
oneself that the SBCS graph contains all of the causal
links, and that no solutions will be lost.

Goal-Directed Forwar d-Chaining Sear ch

Semsyn's forward-chaining search (SFCS) is relegated to
the task of searching the SBCS causal links, in effect
assembling partial plans into plans. The children-
generation function of SFCS differs from that of FCS in
that the candidates are not chosen from the entire set of
domain actions, but rather are constrained to be only those
domain actions appearing in an appropriate causal link
entry. In particular, if none of the domain actions achieve
any of the top-level goals, then SFCS will terminate
immediately without generating any children, whereas
FCS in the worst case degenerates into a blind enumeration
of all action sequences possible from the initial situation.
SFCS alone has no more pruning ability than FCS. The
research effort thus far has just been to integrate BCS and
FCS, and to evaluate the usefulness of doing so. It is
hoped that Semsyn will eventually provide an useful tool
for further study.

Putting It All Together

Finally, next-generation planning systems will need to
interact with their human users. This was one of the
driving motivations for the research community's move
from an automatic to an automated paradigm. We posit
that automatic algorithms can still be useful as sub-
modules to the more encompassing automated systems.
Moreover, SBCS and SFCS have human-understandable
and intuitive children-generation functions, as do BCS and
FCS, so it becomes alluring the possibility to allow the
user to view and to manipulate the search's internal data
structures - they are simply plan fragments! It is our thesis
that user's of automatic planning systems are freed from
planning concerns, and are able to fully concentrate on the
domain modeling aspects of their applications.

The initial testing phase is being carried out in cooperation
with Semsyn’s participation in the 4™ International
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Planning Competition (IPC), hosted at the 2004
International Conference on Automated Planning and
Scheduling. The IPC series has developed a
formidable testbed, and a rigorous evaluation of the
results is forthcoming.

Semsyn’s preliminary results appear satisfactory
insofar as it is able to solve problems from a variety of
domains. However, the algorithm has trouble with
domains that have relatively little variation in the
domain operators. This is because the traditional
wisdom of the research culture is to design a sequence
of problems of increasing difficulty in an artificial way,
by increasing the number of actions that can be
instantiated from a few operators, i.e. by increasing the
number of predicates the operators have at their
disposal. Conversely, in Semsyn’s view, the predicates
are akin to database tuples. This means that it is the
user’s responsibility to model the domain in such a
way as the predicate space can be efficiently explored.
Indeed, it is possible to write database queries that
don’t terminate, yet people routinely use Database
Management Systems as an integral part of their
overall information systems. Analogously, Semsyn’s
goal is to separate the planning aspects from the
domain modeling activities, and to devote its effort to
the task of planning - that is, the efficient construction
of plans based upon knowledge encoded in the domain
operators themselves, regardless of instantiated actions.
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P-MEP [10] is a forward state-space planner that
performs weighted A* style search. It allows a user
to choose the heuristic to be used and the weight in
weighted A*. It has relevance analysis as a prepro-
cessing technique to control search. P-MEP uses the
notions of referenced and updated variables to detect
equivalent states to control search. The key ideas in
P-MEP are the use of mutual exclusion relations (mu-
texes) in the computation of relaxed plans and the use
of intervals of relaxed values. The notion of relaxed
intervals in P-MEP is inspired by relaxations in Sapa
and Metric-FF. The relaxed intervals allow P-MEP to
handle expressions containing +, -, /, *, exponentia-
tion, =, <, >, <, >, A, V,,—,V, and 3. Relaxed inter-
val of a variable contains the minimum and maximum
relaxed values of the variable. Relaxed intervals are
useful in several ways. They allow P-MEP to handle
decrease effects of actions and numerical preconditions
in the computation of relaxed plans. P-MEP uses the
relaxed intervals to check if numerical preconditions
are achievable in a relaxed fashion. Relaxed intervals
also allow P-MEP to handle linear and non-linear ex-
pressions in the goal of a planning problem. The re-
laxed intervals also allow an easy detection of whether
a numerical goal or numerical subgoal is achievable in
a relaxed fashion.

P-MEP creates all ground instances of operators be-

fore search begins. If the domain description does not
specify operator durations, P-MEP assumes that they
are all unity and treats the domain as a temporal do-
main.
World State: P-MEP treats propositions and ground
predicates as numerical variables with domain {0,1}.
A world state S in a node N in the search tree of P-
MEP is the tuple < V, a,t >, where ¢t is time stamp of
S, V is the set of numerical variable-value pairs, and
a is the action applied to generate N. Time stamp of
a world state S is the earliest time at which an action
can be applied in S. P-MEP applies actions so that
they start at the earliest possible times.
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Applicable Actions: The conditions for applicability
of an action o' in a node n with world state S are:
(i) all preconditions of o' that need to be true at its
start or end points must be satisfied by V of S, (ii)
all preconditions of o' that need to be true over its
entire interval must also be satisfied by V of S, and
(iii) effects of o' do not change the value of any boolean
or numerical variable in the preconditions or effects of
any action that o' overlaps with and vice versa.
Statically Mutex Actions: For each action o', P-
MEP computes the set of variables updated by the
action and the set of variables that are referenced by
the action. These sets are denoted by U(o') and R(0')
respectively. These sets contain predicates and dis-
crete variables. As an example, let the preconditions
of o' be a,b and ¢ > 200,e < 100, where a and b are
propositions and ¢, e are discrete variables. Let the ef-
fects of this action be —a,d,c = (c + e — 50), where d
is a proposition. In this case, R(0') = {a,b,c,e} and
U(0') = {d,a,c}. In general, any variable that appears
in preconditions or effects of an action and which is not
updated by the action is a referenced variable for that
action. Two actions o; and o; are statically mutually
exclusive in P-MEP if one or more of the following
three conditions are satisfied: (i) (R(0;) N U(0;)) # ¢,
(i) (R(oy) N V(o)) # ¢, (iii) (Ulo) N Uoy) # ¢
Statically mutually exclusive actions are permanently
mutually exclusive and cannot overlap.

Equivalent States: R is the set of variables refer-
enced by one or more actions and U is the set of vari-
ables updated by one or more actions. Two states s
and s’ are equivalent if the values of all variables in
RN U are same in the V component of s and s'. This
definition of equivalent states allows P-MEP to control
search by not visiting multiple world states that differ
only in the value of variables from U — R. The vari-
ables in U — R do not affect the applicability of actions.
Consider the variable total-fuel-consumed denoting the
total fuel consumed by a partial plan, in transporta-
tion logistics domain. This variable is not relevant to
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achieving any precondition of any action. This vari-
able belongs to U but not to R. This variable can
have infinite non-negative values since infinite flights
are possible. By not considering such variables in the
state equivalence test, P-MEP controls the size of its
search tree.

Search Algorithm: P-MEP conducts forward state-
space search in weighted A* style. The weighted
variant of A* uses the following path cost equation
fn) = 1 —w)*xg(n) +w=h(n),0 <w <1, where
g(n) represents the cost of the path from the root node
to node n, and the h(n) represents the estimate of the
cost of the cheapest path from n to goal. In P-MEP,
the nodes in fringe are sorted according to value of the
f function. The node with lowest f() value is expanded
first. If multiple nodes have the same value of f, then
the node with lowest depth is expanded first. If nodes
with the lowest value of f have the same depth, then
the node that is generated earlier is expanded first. A
node is generated by applying only one action. Since
multiple actions may have the same starting time, con-
currency is possible. An action o' can start during the
interval of other actions that are not statically mutex
with o', making concurrency possible. P-MEP termi-
nates when there is a node n such that every subgoal
is true in the V component of the world state in n.

Relaxed planning graph (RPG): The notion of
RPG was introduced in FF planner [6]. We denote
the goal of a planning problem by G in the rest of the
paper. A subgoal from G is an expression from G. An
RPG is constructed by FF assuming that the delete
effect lists of actions are empty. The notion of propo-
sition level is replaced by the notion of variable level,
in order to construct an RPG for more expressive do-
mains. ¢ th action level occurs between ¢ th variable
level and ¢ + 1 the variable level. P-MEP constructs a
serial relaxed planning graph. P-MEP stores an inter-
val bounded by maximum and minimum relaxed val-
ues for each variable in each variable level. A variable
level is a set of < v, [min(v), maz(v)] > tuples, where
min(v) and maz(v) are minimum and maximum re-
laxed values of variable v. The size of an interval is
monotonically increasing. The interval for a variable
v’ in 4 th variable level is obtained by updating its in-
terval in the ¢ — 1 the variable level with the effects
of the action in the ¢ — 1 th action level. For exam-
ple, let the value of variable v; in the world state of
a node n be 4. Then the interval for v; in the first
variable level in the RPG at n is [4,4]. If an action
increasing v; by 10 is included in the first action level
of the RPG, then the interval for v; in second variable
level is [4,14]. If an action decreasing v; by 20 is then
included in the second action level of RPG, the inter-
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val for v in the third variable level is [-16,14]. If an
action assigning 5 to vy is then included in the next
action level of RPG, the interval for v; in the fourth
variable level is still [-16,14], since 5 is in the interval
[-16,14]. The intervals for variables make it easy to
compute relaxed intervals for expressions and check if
the expressions are satisfied in a relaxed fashion in a
variable level. For example, let the relaxed intervals
for variables v, v, be [-3,5] and [-4,8]. The interval of
(v1 + v2) is [-7, 13]. The intervals for v; * vg, Z—;, and
v1 — vy are found in a similar fashion. The intervals of
complex arithmetic expressions are found using inter-
vals of individual variables and operator precedence.
For example, the relaxed interval for vy * vo * v3 % v4 i
found from relaxed intervals of vq * v *x v3 and v4. The
interval of vy v xv3 is found from the intervals of vy xvs
and v3. The intervals for variables and expressions can
be considered as the intervals of relaxed values. This
is because though P-MEP considers add,delete effects,
increase, assign and decrease effects in computing in-
tervals, it ignores the interactions between actions. So
some of the values in the intervals may be impossible
to achieve.

Intervals of expressions in preconditions or goal are
found only to test if preconditions or goal are achieved
in a relaxed fashion. Intervals for expressions make it
easy to check if actions are applicable in RPG and if
goal is true in RPG. For example, the precondition or
subgoal (v1 + v2) = 50 is true in RPG if 50 lies in the
interval of vy + vy. Similarly, the expression/subgoal
v; < wy is satisfied in a variable level in the RPG if
min(vy) < mazx(vs) is satisfied in the variable level.

P-MEP constructs RPG for a node by applying ac-
tions in forward direction and by computing action and
variable levels, until the intervals of variables satisfy
all expressions in the goal in some variable level or no
variable’s interval changes, whichever occurs earlier. If
some subgoal is not achieved in the RPG of a node
n, P-MEP sets h(n) to co and keeps the node in the
priority queue. m is be expanded after all states with
finite h() values are expanded.

Relaxed plan: Relaxed plans are used to compute h()
values for nodes by P-MEP, like Metric-FF [7], Sapa
[2]. Relaxed plan for a node n is found by P-MEP in
two phases. In first phase, it removes irrelevant actions
from the RPG of n. This removal leaves a subgraph
of RPG with gaps (some action levels are empty). In
the second phase, P-MEP converts this subgraph into
a relaxed temporal plan by pushing actions back to
the earliest possible time, ensuring that statically mu-
tex actions do not overlap. P-MEP considers action
durations only in the second phase.

The relaxed plan found by phase 1 is serial. It
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PLN PL NV | TD | NPG | NGPG | CE | Q | DPG

Sapa 3 Y Y

LPG 3 Y Y

MIPS |1,2,3| Y Y Y Y

TP4 3 Y Y

MFF 1,2 Y Y Y Y |Y Y

FF 1 Y Y |'Y Y
VHPOP | 1,3 Y Y Y |Y Y
P-MEP | 1,2,3| Y Y Y Y Y | Y Y

Figure 1: Expressiveness features handled by various planners from 2002 planning competition. Y: Yes (handled).

is parallelized in phase 2 because temporal planning
problems generally involve makespan minimization.
Makespan of parallelized relaxed plan of node n can be
a better estimate of the makespan of the optimal plan
that achieves the goal from node n, than the makespan
of serial relaxed plan. The estimates of the makespan
of optimal plan from n can be better if statically mu-
tex actions do not overlap in the relaxed plan at n.
Hence overlap of statically mutex actions is avoided in
the parallel relaxed plan.

Supported Domain Features: The domain features
supported by P-MEP and seven other planners that
participated in the international planning competition
in 2002 are shown in Table 1. TP4 and VHPOP are
described in [5] and [8] respectively. The acronyms in
this table have the following meanings: PLN: Planner,
MFF: Metric-FF, PL: PDDL level, NV: Numeric vari-
ables, TD: Time Durations, NPG: Numerical precon-
ditions and goal, NGPG: Negated preconditions and
goal, CE: Conditional Effects, Q: Quantifiers, DPG:
Disjunctive preconditions and Goal. PDDL is plan-
ning domain description language. PDDL 2.1 level 1
includes STRIPS and ADL. PDDL 2.1 level 2 is an aug-
mentation of PDDL 2.1 level 1 with numeric variables.
PDDL 2.1 level 3 is an augmentation of PDDL 2.1 level
2 with time. PDDL levels partially/fully handled by
various planners are also shown in Table 1. P-MEP is
the only planner that handles all domain features in
Table 1. The most recent version of MIPS does handle
ADL.

Relevance Analysis: This is used as a preprocess-
ing technique to reduce the number of actions used in
search. This technique is similar to relevance analy-
sis in [9]. P-MEP gives a user an option to use rel-
evance analysis. P-MEP constructs an extended and
serial relaxed planning graph (ESRPG) for root node
by applying actions in forward direction, as a part of
relevance analysis. The RPG is extended because its
growth may be continued even after all subgoals are
achieved in a relaxed fashion in some variable level. P-
MEP does not check for the achievement of subgoals

in the variable levels when it constructs the ESRPG.
The construction of ESRPG stops when no new action
is applicable and then the set of actions in various ac-
tion levels in the ESRPG is returned as the relevant
actions’ set.

Heuristics: P-MEP allows user to choose a heuristic
from the following four heuristics: Cost, Makespan,
Sum duration and Actions. The heuristics are not new,
but the actual heuristic values and plans differ due
to different method of computing relaxed plans in P-
MEP.
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Introduction

Planning as heuristic search has proven to be a success-
ful framework for STRIPS non-optimal planning, since the
advent of planners capable to outperform in most of the
classical benchmarks the previous state-of-the-art planners
Graphplan (Blum & Furst 1997), Blackbox (Kautz & Sel-
man 1999), IPP (Koehler et al. 1997), STAN (Long &
Fox 1999), LCGP (Cayrol, Régnier, & Vidal 2001), ... Al-
though these planners (except LCGP) compute optimal par-
allel plans, which is not exactly the same purpose as non-
optimal planning, they also offer no optimality guarantee
concerning plan length in number of actions.

The planning as heuristic search framework indeed lead to
some of the most efficient planners, as demonstrated in the
two previous editions of the International Planning Compe-
tition with planners such as HSP2 (Bonet & Geffner 2001),
FF (Hoffmann & Nebel 2001) and AltAlt (Nguyen, Kamb-
hampati, & Nigenda 2002). FF was in particular awarded
for outstanding performance at the 2" International Plan-
ning Competition and was generally the top performer plan-
ner in the STRIPS track of the 3"¢ International Planning
Competition.

The YAHSP planning system (“Yet Another Heuristic
Search Planner”, more details in (Vidal 2004)) extends a
technique introduced in the FF planning system (Hoffmann
& Nebel 2001) for calculating the heuristic, based on the ex-
traction of a solution from a planning graph computed for
the relaxed problem obtained by ignoring deletes of actions.
It can be performed in polynomial time and space, and the
length in number of actions of the relaxed plan extracted
from the planning graph represents the heuristic value of the
evaluated state. This heuristic is used in a forward-chaining
search algorithm to evaluate each encountered state.

We introduce a novel way for extracting information from
the computation of the heuristic, by considering the high
quality of the relaxed plans extracted by the heuristic func-
tion in numerous domains. Indeed, the beginning of these
plans can often be extended to solution plans of the initial
problem, and there are often a lot of other actions from these
plans that can effectively be used in a solution plan. YAHSP
uses an algorithm for combining some actions from each re-

Copyright (© 2004, American Association for Artificial Intelli-
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laxed plan, in order to find the beginning of a valid plan that
can lead to a reachable state. Thanks to the quality of the
extracted relaxed plans, these states will frequently bring us
closer to a solution state. The lookahead states thus calcu-
lated are then added to the list of nodes that can be chosen to
be expanded by increasing order of the numerical value of
the heuristic. The best strategy we (empirically) found is to
use as much actions as possible from each relaxed plan and
to perform the computation of lookahead states as often as
possible.

This lookahead strategy can be used in different search
algorithms. We propose a modification of a classical best-
first search algorithm in a way that preserves completeness.
Indeed, it simply consists in augmenting the list of nodes
to be expanded (the open list) with some new nodes com-
puted by the lookahead algorithm. The branching factor is
slightly increased, but the performances are generally better
and completeness is not affected.

Our experimental evaluation of the use of this lookahead
strategy in a complete best-first search algorithm demon-
strates that in numerous planning benchmark domains, the
improvement of the performance in terms of running time
and size of problems that can be handled have been drasti-
cally improved (cf. (Vidal 2004)).

Computing and using
lookahead states and plans

A state is a finite set of ground atomic formulas (i.e. without
any variable symbol) also called fluents. Actions are classi-
cal STRIPS actions. Let a be an action; Prec(a), Add(a)
and Del(a) are fluent sets and respectively denote the pre-
conditions, add effects, and del effects of a. A planning
problem is a triple (O, I, G) where O is a set of actions, [
is a set of fluents denoting the initial state and G is a set of
fluents denoting the goal. A plan is a sequence of actions.
The application of an action a on a state .S (noted S T a) is
possible if Prec(a) C S and the resulting state is defined by
STa=(5\Del(a)) UAdd(a). Let P = (ay,az,...,an)
be a plan. P is valid for a state S if a; is applicable on S
and leads to a state Sp, as is applicable on Sy and leads to
S, ..., a, is applicable on S;,_; and leads to .S,,. In that
case, S, is said to be reachable from S for P and P is a
solution plan if G C S,,. First(P) and Rest(P) respec-


edelkamp
 56


tively denote the first action of P (a; here) and P without
the first action ((az, ..., a,) here). Let P’ = (by,...,by)
be another plan. The concatenation of P and P’ (denoted by
P @ P')isdefinedby P® P’ = (a1,...,an,b1,...,bm).

Principle and use of lookahead plans

In classical forward state-space search algorithms, a node in
the search graph represents a planning state and an arc start-
ing from that node represents the application of one action to
this state, that leads to a new state. In order to ensure com-
pleteness, all actions that can be applied to one state must
be considered. The order in which these states will then be
considered for development depends on the overall search
strategy: depth-first, breadth-first, best-first. ..

Let us now imagine that for each evaluated state S, we
knew a valid plan P that could be applied to S and would
lead to a state closer to the goal than the direct descendants
of S (or estimated as such, thanks to some heuristic evalua-
tion). It could then be interesting to apply P to S, and use
the resulting state S’ as a new node in the search. This state
could be simply considered as a new descendant of S.

We have then two kinds of arcs in the search graph: the
ones that come from the direct application of an action to a
state, and the ones that come from the application of a valid
plan to a state S and lead to a state S’ reachable from S. We
will call such states lookahead states, as they are computed
by the application of a plan to a node S but are considered in
the search tree as direct descendants of S. Nodes created for
lookahead states will be called lookahead nodes. Plans la-
beling arcs that lead to lookahead nodes will be called looka-
head plans. Once a goal state is found, the solution plan is
then the concatenation of single actions for arcs leading to
classical nodes and lookahead plans for the arcs leading to
lookahead nodes.

Completeness and correctness of search algorithms are
preserved by this process, because no information is lost:
all actions that can be applied to a state are still considered,
and because the nodes that are added by lookahead plans are
reachable from the states they are connected to. The only
modification is the addition of new nodes, corresponding to
states that can be reached from the initial state.

Computing relaxed plans

The determination of an heuristic value for each state as
performed in the FF planner offers a way to compute such
lookahead plans. FF creates a planning graph for each en-
countered state .S, using the relaxed problem obtained by
ignoring deletes of actions and using S as initial state. A
relaxed plan is then extracted in polynomial time and space
from this planning graph. The length in number of actions
of the relaxed plan corresponds to the heuristic evaluation
of the state for which it is calculated. Generally, the relaxed
plan for a state .S is not valid for S, as deletes of actions
are ignored during its computation: negative interactions be-
tween actions are not considered, so an action can delete a
goal or a fluent needed as a precondition by some actions
that follow it in the relaxed plan. But actions of the relaxed
plans are used because they produce fluents that can be in-
teresting to obtain the goals, so some actions of these plans
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can possibly be interesting to compute the solution plan of
the problem. In numerous benchmark domains, we can ob-
serve that relaxed plans have a very good quality because
they contain a lot of actions that belong to solution plans.

The computation of relaxed plans in YAHSP works
closely as in FF, with one notable difference which holds in
the way actions are added to the relaxed plan. In FF, actions
are arranged in the order they get selected. We found use-
ful to use the following algorithm. Let a be an action, and
(a1, as,...,a,) be arelaxed plan. All actions in the relaxed
plan are chosen in order to produce a subgoal in the relaxed
planning graph at a given level, which is either a problem
goal or a precondition of an action of the relaxed plan. a is
ordered after a; iff:

o the level of the subgoal a was selected to satisfy is strictly
greater than the level of the subgoal a; was selected to
satisfy, or

o these levels are equal, and either a deletes a precondition
of a; or a; does not delete a precondition of a.

In that case, the same process continues between a and as,
and so on with all actions in the plan. Otherwise, a is placed
before a;.

Computing lookahead plans

The algorithm for computing lookahead plans (cf. Figure 1)
takes as input the current planning state .S, and the relaxed
plan RP that has been computed by the heuristic function.
Several strategies can be imagined: searching plans with a
limited number of actions, returning several possible plans,
etc. From our experiments, the best strategy we found is to
search one plan, containing as most actions as possible from
the relaxed plan. One improvement we made to that process
is the following. When no action of RP can be applied, we
replace one of its action a by an action a’ taken from the
global set of actions O, such that a’:

e does not belong to RP,
e is applicable in the current lookahead state S’,

e produces at least one add effect f of a such that f is a pre-
condition of another action in RP and f does not belong
to 5.

At first, we enter in a loop that stops if no action can be
found or all actions of RP have been used. Inside this loop,
there are two parts: one for selecting actions from RP, and
another one for replacing an action of RP by another action
in case of failure in the first part.

In the first part, actions of RP are observed in turn, in the
order they are present in the sequence. Each time an action a
is applicable in S, we add a to the end of the lookahead plan
and update S by applying a to it (removing deletes of a and
adding its add effects). Actions that cannot be applied are
kept in a new relaxed plan called failed in the order they get
selected. If at least one action has been found to be applica-
ble, when all actions of R P have been tried, the second part
is not used (this is controlled by the boolean continue). The
relaxed plan RP is overwritten with failed and the process
is repeated until RP is empty or no action can be found.
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function lookahead (S, RP)
let plan = () ;
let failed = () ;
let continue = true ;
while continue A RP # () do
continue «— false ;
forall i € [1,n] do /* with RP = (a1, ...
if Prec(a;) C S then
continue «— true;
S—STai;
plan «— plan ® (a;)
else
failed — failed & (a;)
endif
endfor ;
if continue then
RP « failed ;
failed «— ()
else
RP — ()
while —continue A failed # () do
forall f € Add(First(failed)) do
if f ¢ SA3Ja € (RP® failed) | f € Prec(a) then
let actions =
{a € O| f € Add(a) N Prec(a) C S};
if actions # & then
let a = choose_best(actions) ;
continue < true ;
S—STa;
plan — plan @ {(a) ;
RP «— RP & Rest(failed) ;
failed — ()
endif
endif
endfor ;
if —continue then
RP «— RP & (First(failed)) ;
failed «— Rest(failed)
endif
endwhile
endif
endwhile
return(S, plan)
end

/* S: state, RP: relaxed plan */

L an) ¥/

Figure 1: Lookahead algorithm

The second part is entered when no action has been ap-
plied in the most recent iteration of the first part. The goal is
to try to repair the current (not applicable) relaxed plan, by
replacing one action by another which is applicable in the
current state S. Actions of failed are observed in turn, and
we look for an action (in the global set of actions O) applica-
ble in S, which achieves an add effect of the action of failed
we observe, this add effect being a precondition not satisfied
in S of another action in the current relaxed plan. If sev-
eral achievers are possible for the add effect of the action of
failed we observe, we select the one that has the minimum
cost in the relaxed planning graph used for extracting the
initial relaxed plan (the cost of an action is the sum of the
initial levels of its preconditions). When such an action is
found, it is added to the lookahead plan and the global loop
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is repeated. The action of failed observed when a repairing
action was found is not kept in the current relaxed plan.

Conclusion

We presented a new method for deriving information from
relaxed plans, by the computation of lookahead plans. They
are used in a complete best-first search algorithm for com-
puting new nodes that can bring closer to a solution state.
Although lookahead states are generally not goal states and
the branching factor is increased with each created looka-
head state, the experiments we conducted prove that in nu-
merous domains from previous competitions (Rovers, Lo-
gistics, DriverLog, ZenoTravel, Satellite), our planner can
solve problems that are up to ten times bigger (in number of
actions of the initial state) than those solved by FF or by a
classical best-first search without lookahead. YAHSP seems
also to present good performances in domains from the 4"
IPC, such as Pipesworld, Satellite and Promela/Philosophers
where it solves all the problems, or Psr and Promela/Optical-
Telegraph were a very few problems are not solved. The
domain which seems to be the more difficult for YAHSP is
Airport, where 12 problems are not solved yet.The counter-
part for such improvements in performances and size of the
problems that can be handled resides in the quality of so-
lution plans that can be in some cases degraded (generally
in domains where there are a lot of subgoal interactions).
However, there are few of such plans and quality remains
generally very good compared to FF.
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before any commitments are made; the lower bounds on

that combines a branching scheme based on Partial Orderthe starting times oéll actions as computed in Graphplan

Causal Link (POCL) Planning with powerful and sound
pruning rules implemented as constraints. Unlike other re-
cent approaches that build on POCL planning (Nguyen &
Kambhampati 2001; Younes & Simmons 2003,Tis an
optimal planner that minimizes makespan. The details of
the planner and its underlying formulation are described
in (Vidal & Geffner 2004) that is focused on the compu-
tation of ‘canonical plans’ where ground actions are not
done more than once in the plan. The version used in the
competition, removes this restriction and computes opti-
mal temporal plans, whether canonical or not.

The development otPT is motivated by the limita-
tion of heuristic state approaches to parallel and temporal
planning that suffer from a high branching factor (Haslum
& Geffner 2001) and thus have difficulties matching the
performance of planners built on SAT techniques such as
Blackbox (Kautz & Selman 1999). lapT, all branching

being one example (Blum & Furst 199%)pTthus reasons
with CSP variables that invohal the actions: in the do-
main and not only those present in the current plan, and
for each such action, it deals with two variablg&, a)
andT(p, a) that stand for the possibly undetermined ac-
tion supporting preconditiop of a, and the possibly un-
determined starting time of such an action. A causal link
a’[pla thus becomes a constraifi{p,a) = o', which in

turn implies that the supporter of preconditionp of a
starts at timel'(p,a) = T'(a’). A number of constraints
enforce the correspondences among these variables. At
the same time, the heuristic functions for estimating costs
in a temporal setting, as introduced in (Haslum & Geffner
2001), are used to initialize variables domains and some
‘distances’ between actions (Van Beek & Chen 1999).

The cpPT planner is implemented using the Choco CP
library (Laburthe 2000) that operates on top of Claire,

decisions (resolution of open supports, support threats, and (Caseau, Josset, & Laburthe 1999), a high-level program-

mutex threats), generate binary splits, and nadés the
search correspond to ‘partial plans’ very much as in POCL
planning.

While ideally, one would like to have informative lower
bounds f(o) on the makesparf*(o) of the best com-
plete plans that expand, so that the partial plap can
be pruned iff(c) £ B for a given boundB, such lower
bounds are not easy to come by in the POCL settamy
thus models the planning domain as a temporal constraint
satisfaction problem, adds the constraffit{c) < B for
a suitable bound@3 on the makespan, and performs lim-
ited form of constraint propagation in every noeeof
the search tree. The novelty aPT in relation to other
temporal POCL planners such as IXTET (Laborie & Ghal-
lab 1995) and RAX (Jonssaet al. 2000), that also rely

on constraint propagation (and Dynamic CSP approaches

such as (Joslin & Pollack 1996)), is the formulation that
enablescPT to reason about actionsthat are not yet in
the plan. Often a lot can be inferred about such actions in-
cluding restrictions about their possible starting times and
supports. Some of this information can actually be inferred

Copyright(© 2004, American Association for Artificial Intelli-
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ming language that compiles into C++. Further details
can be found in (Vidal & Geffner 2004) that is concerned
mostly with the computation of optimal canonical plans;
plans where no ground action is done more than once. The
version ofcPT used in the competition removes this re-
striction, and computes optimal temporal plans, whether
canonical or not. Currently, the semantics of these plans
follows the one in (Smith & Weld 1999) where interfering
actions are not allowed to overlap in time. This condi-
tion has been relaxed in PDDL 2.1 where interfering ac-
tions may overlap sometimes (e.g., when preconditions do
not have to be preserved throughout the execution of the
action). We are currently trying to accommodate that se-
mantics as well.
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BFHSP: A Breadth-First Heuristic Search Planner

Rong Zhou and Eric A. Hansen
Department of Computer Science and Engineering
Mississippi State University
Mississippi State, MS 39762
{rzhou,hansen}@cse.msstate.edu

Overview about this midpoint node is used to divide the search prob-

Our Breadth-First Heuristic Search Planner (BFHSP) is a |€m into two subproblems: the problem of finding an opti-
domain-independent STRIPS planner that finds sequential M@ path from the start node to the midpoint node, and the
plans that are optimal with respect to the number of ac- Problem of finding an optimal path from the midpoint node
tions it takes to reach a goal. We developed BFHSP as O the goal node. Each of these subproblems is solved by the
part of our research on space-efficient graph search. It usesSame search algorithm, in order to find a node in the middie
breadth-first search since we found that breadth-first search ©f their optimal path. The process continues recursively un-
is more efficient than best-first search when divide-and- Ul Primitive subproblems are reached, and all nodes on the
conquer solution reconstruction is used to reduce memory optimal solution path have been identified. Since the time it
requirements. The specific search algorithm used by BFHSP t@kes to solve all subproblems is very short compared fo the
is Breadth-First Iterative-Deepening A* (Zhou & Hansen time it takes to solve the original sea.rch problem, th|slte.ch-
2004) with some enhancements. Like HSP2.0 (Bonet & Nique saves a great deal of memory in exchange for limited
Geffner 2001a), BFHSP can search in either progression or ime overhead for solution reconstruction. _ _
regression space. The admissible heuristic function used is 1here are several different ways to store information
the mas heuristic (Bonet & Geffner 2001b) in progression about the midpoint node. BFHSP adopts the method used

search, and theax-pairheuristic (Haslum & Geffner 2000) by Sparse-Memory A* (Zhou & Hansen 2003). Each node
in regression search. stores a pointer to its predecessor or to an intermediate node

along an optimal path, calledrelay node which is retained
in memory. The advantage of this approach is that it takes

Divide-and-Conquer Solution Reconstruction less space and allows faster solution reconstruction.

Our research objective in developing BFHSP is to design
heuristic search algorithms that can find optimal plans using Breadth-First Heuristic Search

limited memory, especially in complex graphs with man L . :
duplicate pathgwhé)re IDA)\/* is usuzflly in%ffgctive. BFHSF): A significant difference bgtwegn BFHSP and HS.RZ'O is that
uses divide-and-conquer solution reconstruction to reduce BFHSP uses a breadth-first |_nstead (.)f th_e tradltlo_nal best-
its memory requirement. Divide-and-conquer solution re- 1IrSt strategy of node expansion. This difference is based
construction was first introduced to the heuristic search com- 2N 9Ur d|§coyery that when d|V|'de-and-con.quer solution re-
construction is used, breadth-first search is more memory-

munity by Korf (1999), based on a similar strategy used in " ;

dynamic programming algorithms for sequence comparison. efﬂmentfthaﬂlbgst-;wst search (Zhou & Hansean 2003)' Thﬁ

The technique exploits the fact that it is not necessary to reason for this Is that memory requirements depend on the
number of nodes needed to maintain a boundary between

store all expanded nodes in a Closed list in order to prevent the fronti d interior of th h. and not the total
re-generation of already-expanded nodes. Instead, it suffices ' '€ ITONUErand interior ot thé search, and not the total num-
ber of nodes expanded. Figure 1 conveys an intuition of

f hat formtsoa h ) .
to store a subset of nodes that for ndarybetween t e& how breadth-first search results in a smaller set of bound-

E%?]Jgi;az%%égfe”or of the explicit search graph (Zhou ary nodes. It shows that best-first node expansion “stretches

out” the boundary, whereas breadth-first search does not and
uses an upper bound to limit the width of the boundary. Al-
though breadth-first search expands more nodes than best-
first search, the memory it saves by storing a smaller bound-
ary results in more efficient search.

Note that BFHSP uses both an admissible heuristic func-
tion and an upper bound to limit exploration of the search
space. No node is inserted into the Open list iffitsost is
Copyright © 2004, American Association for Artificial Intelli- greater than an upper bound on the cost of an optimal solu-
gence (www.aaai.org). All rights reserved. tion, since such nodes cannot be on an optimal path.

Although nodes inside the boundary can be removed from
memory without risking duplicate search effort, this means
it is no longer possible to reconstruct a solution by the tra-
ditional traceback method. To allow divide-and-conquer so-
lution reconstruction, each node stores information about a
node along an optimal path to it that divides the problem in
about half. Once the search problem is solved, information
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Goal

Breadth-first boundary Best-first boundary

Figure 1: Comparison of best-first and breadth-first boundaries.
The outer ellipse encloses all nodes witttost less than or equal
to an (optimal) upper bound.

A breadth-first search graph divides into layers, one for

each depth. To prevent duplicate search effort, BFHSP keeps

(at least) three layers in memory: the currently-expanding
layer, its immediate previous layer, and the next layer. In
addition, it also stores eelay layerfor the purpose of solu-
tion reconstruction. Other layers can be pruned to recover
memory.

BFHSP provides two options regarding how previously-
explored layers are removed from memory. The first op-
tion, calledaggressive pruningremoves immediately any
layer that is not one of the four layers mentioned previously.
The second option, callddzy pruning is the same as the
first one, except that it removes layers only when memory
is full. Because BFHSP with lazy pruning is the same as
breadth-first branch-and-bound search until memory is full,
the time overhead of solution reconstruction is avoided if
there is enough memory. In IPC-4, BFHSP uses lazy prun-

ing during solution reconstruction, because subproblems are

often small enough in size that they can be solved by ordi-
nary breadth-first branch-and-bound search.

For undirected graphs, storing only one previous layer
is sufficient to prevenall duplicate search effort (Zhou &

Hansen 2004). For directed graphs, the number of times a

node can be re-generated by BFHSRtisnostlinear in the
depth of the search. This contrasts sharply to the potentially

exponential number of node re-generations for linear-space

search algorithms that rely on depth-first search.

Breadth-First Iterative-Deepening A*

Although BFHSP uses an upper bound to limit its search
space, it is possible to run the planner without a previously-
computed upper bound.
strategy can be used to avoid expanding nodes that have a
f-cost greater than a hypothetical upper boumBteadth-
First Iterative-Deepening A{BFIDA*) first runs breadth-
first heuristic search using thecost of the start node as an
upper bound. If no solution is found, it increases the up-
per bound by one (or to the leagtcost of any unexpanded
nodes) and repeats the search until a solution is found. In
this respect, it is similar to Depth-First Iterative-Deepening
A* (Korf 1985). The difference is that it never expands
the same node twice during the same iteration. (This claim
holds for undirected graphs, and for many — but not all — di-

Instead, an iterative-deepening

upper bound. However, BFIDA* may run more slowly than
BFHSP with a previously-computed upper bound, because
running multiple iterations of BFHSP takes extra tifne.

To reduce the number of iterations, BFHSP uses an im-
proved version of BFIDA*, calleFIDA*_CR that is based
on an idea used in IDATCR (Sarkaret al. 1991), where
“CR” stands for controlled re-expansion. The idea is to cre-
ate an algorithm in which the number of nodes expanded in
successive iterations increases exponentially with the num-
ber of iterations. Among other things, BFIDAZR has an
interesting advantage over IDAGR. That is, for planning
problems with unit action cost, BFIDAER can guaran-
tee that the first solution found is optimal, because it uses
breadth-first search; whereas IDAZR cannot, due to its use
of depth-first search.

Unlike conventional iterative-deepening search, which in-
creases its bound to the minimum f-cost of any unexpanded
nodes after each iteration, BFIDAZR may use a slightly
higher bound to reduce overall node expansions by reducing
the number of iterations it takes to find a solution. The ben-
efit of using BFIDA*.CR is most evident in problems with
small branching factor but long solution depth, such as the
newly-releaseairport domain in IPC-4.

Admissible Search Heuristics

BFHSP uses the admissililg, .. heuristic (Bonet & Geffner
2001b) in progression search and thwax-pair heuris-

tic (Haslum & Geffner 2000) in regression search. In ad-
dition, we implemented thenax-triple heuristic for regres-
sion search by considering triples (instead of pairs) of atoms.
The max-triple heuristic is more accurate than the max-pair
heuristic, and often results in four or five-fold reduction
in node expansions. The max-triple heuristic is, however,
more time-consuming to compute and takes more memory
to store, because its time (and space) complexity is cubic
in the number of atoms. As a result, it is not the default
search heuristic in BFHSP. An interesting observation, how-
ever, is that using the max-triple heuristic lets BFHSP solve
some STRIPS instances of tipdilosophersproblem that
cannot be solved by using the max-pair heuristic in regres-
sion search, because using the max-triple heuristic makes
it possible to recognize high-order mutexes (Blum & Furst
1995) and to prune states that contain them.

Special Features
Breadth-first (heuristic) search, when applied to problems

"With unit action cost, has the advantage that when a node

is first generated, an optimal path to it has been found.
With some changes to the algorithm, this property can be
exploited to reduce the internal memory requirement of
BFHSP. In fact, we have developed an external-memory ver-
sion of BFHSP that uses disk storage in order to bound its
internal-memory requirement (Forthcoming). However, we
did not use it in IPC-4, because given the constraints of the
Competition (30 minutes of CPU time and 1 gigabytes of

LIt is possible to improve the efficiency of BFHSP by reusing

rected graphs.) The amount of memory used is the same asinformation stored from previous iterations of BFIDA*, but we did

the amount of memory BFHSP would use given an optimal
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RAM), it is unclear whether memory is the bottleneck in-
stead of time. In our experience with IPC-4, there are more
problems for which BFHSP ran out of time before it ran out
of memory, than the other way around.

Conclusion

Our primary design goal for BFHSP is to reduce its memory
requirement, which is an important issue for many optimal
heuristic search-based planners. Unfortunately, the time and
space constraints of this Competition do not make it possible
to fully demonstrate the advantages of BFHSP. For example,
we have run BFHSP for days without running out of memory
and have used it to find optimal plans for STRIPS problems
that are far beyond the reach of HSP2.0 or HSPr* (Haslum
& Geffner 2000). We believe that in many real-world ap-
plications where optimality is important, memory is likely
to be a bottleneck, and BFHSP will have an advantage over
other optimal planners.
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Heuristic Planning via Roadmap Deduction

Lin Zhu and Robert Givan *
ElectricalandComputerEngineeringPurdueUniversity, WestLafayettelN 47907USA
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Abstract

Porteous et al. (2001) introduced the concept of “planning
landmarks”—propositions that must be true at some point
during the execution of every successful plan. We define “re-
laxed landmarks,” a subset of the planning landmarks, and
give a sound and complete algorithm for computing relaxed
landmarks. All the landmarks computed by the previous
method are relaxed landmarks, but that method was signif-
icantly incomplete for finding relaxed landmarks. We addi-
tionally discriminate between useful “causal” landmarks and
misleading “non-causal” landmarks, and our method easily
omits the latter. We then present a novel method for partially
ordering landmarks into “landmark roadmaps”, where two or-
dered landmarks are present in the given order in every suc-
cessful plan execution. Finally, we give an efficient means of
extending FF’s heuristic to leverage a landmark roadmap by
weighting the components of the relaxed plan. The SCHEME
variant of FF using this heuristic, ROADMAPPER, works on
the non-temporal ADL versions of the IPC4.

Our ROADMAPPER planneris a variantof FF wherethe
heuristicis significantly more complex and derived from
a partially orderedset of landmarks. In what follows,
we formalize, motivate, and define the heuristic usedin
ROADMAPPER.

Background

We referto (McAllester & Rosenblitt1991)as SNLP and
generallyfollow andadaptit for notationregardingSTRIPS
planningandpartialorderplanning.

Strips Planning. Let X be a finite set of proposi-
tions. A state S is a finite subsetof X. An ac-
tion o is a triple o (PRE(0), ADD(0), DEL(0)) where
PRE(0) arethe preconditions, ADD(o) is the add list and
DEL(0) is the delete list, eachbeing a set of proposi-
tions. The result RESULT(S, (o1, ...,0,)) Of applying
an action sequence(oy,...,0,) to a state S is given
by RESULT(RESULT(S, (01,...,0n-1)), (0n)), Wherefor n
equalsl the resultis undefinedunlessPre(o;) C S, and
(S UADD(01)) — DEL(01), Otherwise.

“We are grateful to Alan Fern and Matthew Greig for useful
discussions.
Copyright © 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.
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A planning task P is a setof actionscontainingactions
START andFINISH, wherePRE(START), DEL (FINISH), and
ADD(FINISH) are all empty We refer to PRE(FINISH)
as the goal region and ADD(START) as the initial state.
We also considerthe relaxed planning task P® (which
ignoresdelete effects) given by {(PRE(0), ADD(0),0) |
(PRE(0), ADD(0), DEL(0)) € P}.

A linear solution for a task P is an orderedaction se-
quenced, beginningwith START , endingwith FINISH such
thatRESULT(0), 0) is defined.

Partial Order Planning To allow multiple occurrencesf
thesameactionor thesamepropositionwithin ournonlinear
planswe introducefinite setsof step names andfact names,
respectiely. Eachplanincludesa symbol table mapping
stepnamesto actionsandfactnamesto propositions. We
usestepnamesandfactnamesasactionsor propositionsre-
spectiely, assuminganimplicit look-up of the correspond-
ing action or propositionin the appropriatesymbol table.
Notethatnamingfor factsis neededsothatwe canlateral-
low afactto be a landmarkmorethanonetime, indicating
thatthatfactmustbeaddedmultiple timesin ary successful
plan.

A nonlinear plan, or plan for short,is a pair (3, <) of
a symboltable ¥, anda partial orde? < on names$ (step
namesandfactnamesjn . We write z < y to abbreviate
x <y Ax #y. Thelength of theplanis the numberof step
symbolsin 3.

SNLP introducedthe conceptof causal links to help
developinga systematic soundand completesearchalgo-
rithm. Causallinks can be inferred from our representa-
tion. A causal link is a triple (s, p,w), written ass = w,
where s andw are stepnames,andp is a propositiorf in
ADD(s)NPRE(w), suchthats < = < w for somez mapped
to p, andthateitherv < s orw < v for every stepnamev
intheset{y € ¥ — X | p € DEL(y)} — {s, w}. Note,there
can betwo differentcausalinks s; % w andss % w for

This is different from the original SNLP paper, where the sym-
bol table contained only step names.

2For our purpose, a partial order is a reflexive, transitive, anti-
symmetric relation, viewed as a set of orders =z < y .

8Again, ordering on fact names is necessary to allow proposi-
tion landmarks.

“Note, not a fact name.
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the samestepnamew andthe samepropositionp. This is
notthe casefor SNLP

A bijection o on namess calleda renaming. We extend
suchrenamingsnaturally to bijectionson complex objects
containingnamegqsuchasplans),in eachcaserenaminghe
namesappearingwithin. We saya nonlinearplan (¥/, <’)
refines (X, <) whenever, for somerenaminge, o(X) C ¥/
ando (<) C<'. If eitherof the containmenis proper the
refinements calledstrict.

A nonlinearplanis called complete if FINISH is named
by ¥, andfor every stepnamev € X andevery proposition
p in PRE(v), thereis at least one causalink s = v. Later
in this paperwe generallyrestrictour attentionto nonlinear
plansthatarecomplete.

A relaxed (nonlinear) plan for P is a nonlinearplan for
the correspondingelaxed task P®. Obviously every plan
for P is arelaxed plan for P. A relaxed plan is called
non-redundant if ary propositionor actionis namedat most
once.Any relaxedplanrefinessomenon-redundantelaxed
plan.

Landmarks and Roadmaps

Definition 1 A nonlinear plan (X, <) is aroadmagor plan-
ning task P if every complete nonlinear plan for P refines
(3, <).

We call actionsor propositionsappearingn 3 for aroadmap
causal landmarks. Causallandmarksthat are propositions
arelandmarks in the senseof Porteousetal. 2001:theplan-
ning problemcannotbe solved if the actionsaddingsuch
a propositionare removed. However, not every landmark
is a causalandmark: somelandmarksarejust “incidental”
effects of the action that addsthem. Considera problem
wherethe agentmusttravel in therainto solve the problem.
“Gettingwet” will beanon-causdiandmarkasit is aneces-
saryeffect of an essentiahction. Setting“getting wet” asa
subgoalwould be misleading.Thuswe considemon-causal
landmarksto be misleadingand inappropriateas subgoals
for theplanningtask.

Porteouset al. shaved the problemof finding landmarks
for a planningtaskto be PSRACE-hard. The proof canbe
easilyextendecdhere.

Theorem 1 The problem of deciding whether a proposition
or an action is a causal landmark is PSPACE-hard.

Thereforededucingany nontrivial roadmapis difficult as
well. Here we will concentrateon a tractablesubsetof
roadmaps.

Definition 2 A relaxed roadmapfor planning task P is a
roadmap for the corresponding relaxed planning task P,

We call actionsor propositionsappearingn X for arelaxed
roadmaprelaxed causal landmarks. Every relaxedroadmap
is aroadmapandthereforeavery relaxedcausalandmarkis
acausalandmark.

To computerelaxed roadmaps,we first assumea base
algorithm A_RELAXED_PLAN(P) that finds some non-
redundant plan for the relaxed planningtask P%, if there
exists one, and returns FALSE otherwise. The heuristic
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computationin FF containsan efficient implementation
of A_RELAXED_PLAN, which empirically often returnsa
goodapproximatiorof the shortestrelaxedplan.

The relaxed roadmapis computedn a generate-and-test
way. Wefirstcall A_ RELAXED_PLAN to generatarelaxed
plan (¥, <). Sinceby definitionary relaxedroadmagis re-
finedby (X, <), we selectasubsebf 3 andasubsebf < to
getarelaxedroadmapby thetestphasedescribedelow.

Again, the function A_RELAXED_PLAN is usedto test
whethera propositionor anactionis a relaxed causalland-
mark. To do so, we first definethe reducedplanningprob-
lem Py, intendedto be solvable exactly when z is not a
causallandmarkfor P. If the landmarka which we want
to testis a proposition, P; is {0z = (PRE(0), ADD(0) —
{z},DEL(0)) | 0 € P}, otherwiseP; = P — {z}. We
know z is a relaxed causallandmarkfor P if andonly if
A_RELAXED_PLAN(P;) returnsFALSE.®

Further we can usethe abose methodto verify x < y
for a (relaxed) roadmap.To do so, we define P_,,;, the sub-
problemof P with goalof reachingy. P-,, is thesameas
P exceptthat FINISH is replacedwith (PRE(y), 0, @) if y is
a stepname,and ({y}, 0, #) otherwise. For every pair of
causalandmarksr andy, we know thatz < y appearsn a
relaxedroadmapf andonlyif = isarelaxedcausalandmark
of P_,,,i.e., A_RELAXED_PLAN(P;, ) returnsFALSE.

In the algorithmbelow, we useR* to denotethereflexive
transitive closureof arelation R.

Algorithm 1 RELAXED_ROADMAP(P)
Input: A planning task

(3, <.) «— A _RELAXED_PLAN( P)
Y — {zeX. |

not A RELAXED_PLAN( P:) }
< e {@y) €< N x By |

not A RELAXED_PLAN( P;_.,) }
return (3,,<¥)

Theboundonthetimesof calling A_RELAXED_PLAN(P)
is O(n + m?), wheren is the total numberof actionsand
propositions,and m is the total numberof relaxed land-
marks. In practice,m is typically much smallerthan n.
Thereare several waysto make this computationmore ef-
ficientwhichareomittedhere.

Theorem 2 The output of RELAXED_ROADMAP(P)

Soundness is a relaxed roadmap for P, and
Completeness refines every relaxed roadmap for P.

We note herethat the above methodis not the only to de-
duceroadmaps.Roadmapgeneratedn otherwayscanbe
incorporated.

Weighted Relaxed Plan Length asa Heuristic

A roadmapintuitively containsimportantorderedsubgoals
of a planningproblem. Porteouset al. 2001 proposedto
useit to sub-dvide planningproblemsinto smaller easier

®In contrast, Porteous et al. define Pz as P—{o | z € ADD(0)}
if 2 is a proposition. This can be used to test landmarks, but cannot
distinguish causal landmarks.
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pieces,and then usea baseplannerto solve them one by

one. This methodology however, ignoresthe interactions
betweensolving subgoals. In particular the baseplanner
may solve a subgoaln away sothatlater subgoaldecome
hardor impossibleto solve.

Another way to utilize landmarksis to simply use the
numberof landmarksasa heuristicguidingforward search.
Empirical resultsshaw it is effective on somedomainsat
a high level (Zhu & Givan 2003). However, this heuristic
is not informative on how to solve the subgoals.It is only
whena subgoals solved, by blind searchthatthe heuristic
decreaseby one.

We introducea novel usageof roadmapselov. We use
roadmapgo weightthe component®f a successfuheuris-
tic, emphasizingolvingonesubgoalwhile keepinganeye
onthesolutionof othersubgoals.

The succesof FF (Hoffmann & Nebel 2001) mainly
comesfrom its efficient and accurateheuristic, and its
unique searchstrateyy, enforced hill-climbing, that is in-
completebut often very fasf. Unlike pure hill-climbing,
which iteratively selectssingle actionswith the bestone-
step-look-aheabeuristicvalueandoften hasdifficulty with
localminimaandplateausenforcedhill-climbing iteratively
usesbreadth-firstsearchto find action sequences that lead
to stateswith heuristicvaluesthatarestrictly betterthanthe
currentstate.

Here,we discussFF's heuristicand our way to improve
its quality. We know that an ideal searchheuristicwould
be the optimallengthof a completeplan. Sincethis heuris-
tic is not tractablycomputable FF approximatest by two
relaxations.In the following discussionwe denotethe set
of plansfor task P by PLANS(P), andthe set of relaxed
plansby RELAXED_PLANS(P). Obviously PLANS(P) C
RELAXED_PLANS(P).

First, FF considerghe relatively easiermproblemof com-
putingRELAXED_PLANS(P), andapproximategandlower
bounds)the optimal lengthamongPLANS(P) by the opti-
mallengthamongRELAXED_PLANS(P). Empirical (Hoff-
mann2001) andtheoretical(Hoffmann2002) resultsshav
thatoptimalrelaxedplanlength(appliedwith enforcedhill-
climbing) is a goodheuristicfor a large variety of planning
domainsandoftenleadsto polynomialsearchcomplexity.

Secondsinceit’s still difficult to computethe optimalre-
laxed plan, it extractsone relaxed plan to get an approxi-
mationof the optimal relaxed planlength, utilizing various
heuristicconsiderationso encourageearoptimality. Em-
pirical results(Hoffmann2001) show thatthe lengthof the
relaxed plan extractedthis way is often a goodapproxima-
tion of the optimal relaxed planlength. FF usesthis length
asits heuristic.

We extendthe relaxed-plan-lengttheuristicby assigning
weightsto its components.Among all the landmarksthat
have no otherlandmarkorderedbeforethemin theroadmap,
we chooseoneachiezableby the shortesrelaxedplan. The
heuristicof the global problemis the weightedsum of re-
laxed plan lengthsof all landmarks.The chosenlandmark

®1n the rare case the enforced hill-climbing fails, FF resorts to
an expensive but complete search.
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getsweight f, andall the othersgetweight1. We gener
ally considerf thatis greaterthan1. The greaterf is, the
moreaggressie the planneris on solving one subgoal and
themoreobliviousit is to thedifficulty of othersubgoals.

In theoryandin practice thecomputatiorof this heuristic
shouldaddonly trivial burdento thatof FF, besidegsheone-
time costof computingroadmap.

We then utilize this heuristicin a similar way to FF,
and apply the resulting planner ROADMAPPER, to non-
temporal ADL versionsof the fourth internationalplan-
ning competition. Our implementationis fully written in
SCHEME, adialectof LISP.
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Rutgers University Carnegie Mellon University
Piscataway, NJ 08854 USA Pittsburgh, PA 15213 USA
mlittman@cs.rutgers.edu lorens@cs.cmu.edu
Abstract 22 groups (spread over 4 continents) signed up to receive the

_The 2004 Interna_ti_on_al Plan_ning Competition, IPC-4, fIrSI:]vAerSr:?ggézhivPPhDaL V?“datll(on SOftWﬁr.e' "
includes a probabilistic planning track for the first time. n Aprit. » WE Neld a “mock competition “as a way
We briefly summarize the design of the track. of identifying the most committed groups and for testing
our evaluation procedure. Six groups participated (groups
. C (UMass), E (Dresden), G (ANU), J (Purdue), P (Simon
Introduction Bolivar) and, D (Bowdoin)). Several other groups expressed
Domain-independent planners seek to synthesize plans thatregrets that their planners were not yet ready. As of this writ-
achieve goals as cheaply as possible. While classical plan-ing, several groups have explicitly pulled out of the com-
ning is concerned with domains in which operators have de- petition and 15 groups remain signed up. We're expecting
terministic effects—the planner can predict with certainty between 5 and 10 groups to participate in the competition
how its decisions will change the environment—work on within the next three weeks.
probabilistic planning expands the field to include opera-
tors with uncertain effects. The inclusion of probabilistic Domain Description Language
effects extends domain description languages to a more re-

alistic class of applications. However, this increased gener- i o L
ality comes with the price of increased computational com- studying “factored” or first-order Markov decision processes

plexity of planners and plan evaluation (Littman, Goldsmith, (€Xtensions of MDPs to predicate-based state representa-
& Mundhenk 1998). t|pns) and .deC|S|on-theo_ret|c planning (g_xtensmns of clas-

The 2004 International Planning Competition, IPC-4, sical pIgmnmg to gncertam_effects and u'gllltles). The state qf
introduces a probabilistic planning track for the first e artin evaluating classical planners is the IPC and their
time. The goal of the track is to provide a forum for Choice of domain description languages is PDDL (Fox &
the evaluation and comparison of approaches to prob- Long 2001). We sought to mtroduce@ m'”'ma' set of exten-
abilistic planning. At the time of this writing, most of  Sions to PDDL2.1 to support probabilistic effects. The prob-
the logistical decisions have been made, but the com- 2pilistic planning domain description language (PPDDL1.0)
petition and evaluation have not yet taken place. This we developed is described in the following paper.

document summarizes the status of the competition as ~PDDL1.0 extends PDDL2.1 to support the succinct rep-
of April 2004. For the latest developments, please visit: resentation of Markov decision processes. However, for this

http://www.cs.rutgers.edu/ ~mlittman/topics/ first competition, we decided to restrict the set of Ianguagg
ipcO4-pt/ . features that participants would need to support. Specifi-
The probabilistic track was organized by the authors cally, the evaluation domains included neither numeric state

Michael L. Littman and Hkan L. S. Younes. and a team at  V@riables nor hidden propositions. As such, there is a direct

Rutgers consisting of John Asmuth, David Weissman, and conversion from the provided PPDDL specifications to finite
Paul Batchis. ' ' (though perhaps enormous) MDPs.

To support the programming efforts of the participants,

Calendar we provided C++ code for parsing PPDDL domains and
. o problems and an mtbdd-based converter from PPDDL to a
Planning for the probabilistic track dates back to shortly af- propositionalized MDP representation. We believe several

ter IPC-1. However, it was Sven Koenig and Shlomo Zil- - icipants wrote their own parsers and converters and oth-
berstein’s idea to specifically create a probabilistic track for o< \;sed our initial code to varying degrees.

IPC-4. Initial attempts to drum up support for the compe-
tition in 2002 led to the creation of a mailing list with ad- A
dresses of 87 interested researchers. As the form of the Objectives

competition itself took shape, potential participants were Each domain used in the competition came in one of two
asked to register in September 2003. Representatives frompossible styles. lgoal-onlydomains, a goal specification

We intended the competition to be accessible to researchers
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was provided and the objective of the planner was to reach a an option). The average reward obtained over these 30 runs

goal state. Planners in these domains are evaluated by esti-(with zero reward for any runs that were not taken) is the

mating the probability that they will reach a goal state. Such planner’s evaluation score.

domains can be viewed as a type of MDP in which a unit We chose 30 runs because this number may provide suffi-

reward value is provided upon arrival in a goal state and all cient statistical confidence to distinguish between planners.

other transitions result in zero reward. We did not subdivide the 15 minutes into 30-second blocks
The second, and more common, style of domain in the to allow participants to amortize planning effort over multi-

competition was “reward goal” problems. These domains ple runs. We suspect that most planners will use the majority

include operators with state-independent cost, a goal spec- of the 15 minutes to construct a plan and the remainder to

ification, and a goal-reward value issued upon arrival in a evaluate the plan 30 times. However, the evaluation proce-

goal state. Although PPDDL supports positive and negative dure supports a wide variety of strategies.

state-dependent rewards as well as continuing tasks with no

terminating goal state, we thought restricting objectives as Domains

described kept them as close as possible in spirit to the kinds |, the mock competition, we included 19 test problems:
of objectives supported in the classical traciBy assign- blocksworld (5 5-block problems, 5 25-block problems,

ing goal rewards, each execution of a planner on a problem 54 5 125-plock problems), one colored blocksworld prob-
terminates with a total reward value, with early termination |em  one fileworld problem, a variation of the coffee do-

preferred to longer execution traces. Planners are comparedyain (Dearden & Boutilier 1997), and a variation of the

according to their total expected reward, computed as the gandcastle problem (Majercik & Littman 1998). These in-

sum of the goal reward (if obtained) minus any action Costs. ¢jyde problems with and without functions and both goal-

_ YVe alsq planned to support evaluation of nondetermln.ls'- only and reward-goal domains.

tic” domains. However, as no groups stepped up to partici-  The blocksworld problems were created using a

pate in such a track, we did not pursue it. blocksworld problem generator that we developed. It will

) be available after the conference on the competition web-

Evaluation site. We have also released a logistics domain generator we

In classical planning, a plan is a series of operators. A valid call “boxworld”. Problems generated from the blocksworld

plan is one that, when applied to the initial state, achieves the and boxworld generators will be included in the competition.

goal. Because of the uncertainty in state transitions, straight- Because these generators were released in advance, partic-

line plans are often not appropriate in probabilistic domains. ipants have the option of learning or hand-tuning rules for

Although several groups have expressed an intention to syn- their planners to exploit structure in these domains.

thesize only unconditional plans, we did not want to impose ~ Several other domains will be included in the competi-

any particular plan representation on participants. tion, to be distributed immediately prior to evaluation. All
We decided to evaluate planners by sampling or simula- domains we used for evaluation will be made available to

tion. That is, our plan validator is a server, and individual interested researchers. Visit our web site or contact us by

planning/execution algorithms connect to the evaluator as email for more information.

clients. They initiate a session by providing an agreed upon

domain id, receive an initial state, and return an operator. Acknowledgements

T_h_e sc_erver—client dialog conti_nues until_ a terminating con-  This work was supported in part by NSF grants 11S-0329153
dition is reached at which point the validator evaluates the and 11S-0315909. We thank the ICAPS and IPC organizers

performance of the planner. This entire process is repeated for their support and encouragement and the participants for
several times with results averaged over the multiple runs.  their enthusiasm and creativity.

Source code for a server (“mdpsim”) was provided to all
participants and updated as changes were made to the do-
main description language and evaluation procedure. For
official evaluations runs, a server was run at Rutgers with
participants connecting via the Internet. In trial runs, par-
ticipants reported communication times ranging from 20ms
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PPDDL1.0: The Language for the Probabilistic Part of IPC-4

Hakan L. S. Younes
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213, USA
lorens@cs.cmu.edu

Introduction

A standard domain description language, PDDL (Ghadtab

al. 1998; McDermott 2000; Fox & Long 2003), for deter-
ministic planning domains has simplified sharing of domain
models and problems in the planning community, and has
enabled direct comparisons of different planning systems.
As a result, there has been considerable progress in plan-
ning research with deterministic domain models since the
first International Planning Competition in 1998.

The 4th International Planning Competition includes a
probabilistic track for the first time in an attempt to create
a common platform for the evaluation of probabilistic and
decision-theoretic planning systems. This document briefly
describes the input language, PPDDL1.0, that was used for
the probabilistic track. PPDDL1.0 is essentially a syntac-
tic extension of levels 1 and 2 of PDDL2.1 (Fox & Long
2003). We assume that the reader is familiar with PDDL2.1,
so focus on the new language features, which include prob-
abilistic effects and rewards. The semantics of a PPDDL1.0
planning problem is given in terms of a Markov decision
process (Howard 1960).

Note that, unlike PDDL2.1, we do not impose a specific
structure on plans in PPDDL1.0. Planning systems are eval-
uated using a client-server model in the probabilistic track of
the competition. During evaluation of a planner, the server
send a state to the client (planning system), which in return
sends an action to be executed in the given state. The prob-
lem of plan representation is left entirely to the planning sys-
tems.

Probabilistic Effects
In order to define probabilistic and decision-theoretic plan-
ning problems, we need to add support for probabilistic ef-
fects. The syntax for probabilistic effects is
(probabilistic pPL €1 ... P €r)
meaning that effeet; occurs with probability,;. We require

that the constraintg; > 0 andezlpi = 1 are fulfilled: a
probabilistic effect declares an exhaustive set of probability-
weighted outcomes. However, we allow a probability-effect

pair to be left out if the effect is empty. In other words,
(probabilistic pL el ... P oe)

with 2!, p; < 1is syntactic sugar for

70
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Name Type | Initl | Init2
bomb-in-package g1 | POOlEAN] true | false
bomb-in-package ,cmge2 | DOOlEAN| false | true
toilet-clogged boolean| false| false
bomb-defused boolean| false| false

Table 1: State variables and their initial values for the
“Bomb and Toilet” problem.

(probabilistic p1 er ... pp e g (and))

with g = 1 — 3'_, p;. For example, the effect
(probabilistic 0.9 (clogged))

means that with probability.9 the state variablelogged
becomes true in the next state, while with probabilitythe

state remains unchanged. Outcomes are not required to be
mutually exclusive. A new requirements flag is introduced
to signal that support for probabilistic effects is required:

:probabilistic-effects

Figure 1 shows an encoding in PPDDL of the “Bomb
and Toilet” example described by Kushmerick, Hanks, &
Weld (1995). In this problem, there are two packages,
one of which contains a bomb. The bomb can be defused
by dunking the package containing the bomb in the toilet.
There is a0.05 probability of the toilet becoming clogged
when a package is placed in it. The problem definition in
Figure 1 also shows that initial conditions in PPDDL can
be probabilistic. In this particular example we define two
possible initial states with equal probabilit9.§) of be-
ing the true initial state. Table 1 lists the state variables
for the “Bomb and Toilet” problem and their values in the
two possible initial states. Intuitively, we can think of the
initial conditions of a PPDDL planning problem as being
the effects of an action forced to be scheduled right before
time 0. Also, note that the goal of the problem involves
negation, which is why the problem definition declares the
:negative-preconditions requirements flag.

PPDDL allows arbitrary nesting of conditional and prob-
abilistic effects. This is in contrast to popular propositional
encodings, such as probabilistic STRIPS operators (PSOs)
(Kushmerick, Hanks, & Weld 1995) and factored PSOs
(Dearden & Boutilier 1997), which do not allow conditional
effects nested inside probabilistic effects. While arbitrary
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(define (domain bomb-and-toilet)
(:requirements :conditional-effects :probabilistic-effects)
(:predicates (bomb-in-package 7?pkg) (toilet-clogged) (bomb-defused))
(zaction dunk-package
:parameters (?pkg)
.effect (and (when (bomb-in-package ?pkg) (bomb-defused))
(probabilistic 0.05 (toilet-clogged)))))

(define (problem bomb-and-toilet)
(:domain bomb-and-toilet)
(:requirements :negative-preconditions)
(:objects packagel package2)
(:init (probabilistic 0.5 (bomb-in-package packagel)
0.5 (bomb-in-package package?)))
(:goal (and (bomb-defused) (not (toilet-clogged)))))

Figure 1: PPDDL encoding of “Bomb and Toilet” example.

nesting does not add to the expressiveness of the language,is-wet is false. Note that a total reward df0 can be

it can allow for exponentially more compact representations awarded as a result of executing the “buy-coffee” action if
of certain effects given the same set of state variables and ac-it is executed in a state where bother-has-coffee and
tions (Rintanen 2003). However, any PPDDL action can be —is-wet hold.

translated into @&etof PSOs with at most a polynomial in- Action effects with inconsistent transition rewards are not
crease in size of the representation. Consequently, it follows permitted. For example, the effe@probabilistic
from the results of Littman (1997) that PPDDL is represen- 0.5 (increase (reward) 1)) is semantically in-

tationally equivalent to dynamic Bayesian networks (Dean valid because it associates a reward of bbtAnd 0 to a
& Kanazawa 1989), which is another popular representation self-transition.

for MDP planning problems. Regular PDDL goals are used to express goal-type per-
formance objectives. A goal statemdrgoal ¢) for a
Rewards and Plan Objectives probabilistic planning problem encodes the objective that

the probability of achieving should be maximized, unless
an explicit optimization metric is specified for the planning
problem.

For planning problems instantiated from a domain declar-
ing the:rewards requirement, the default plan objective
is to maximize the expected reward. A goal statement in the
specification of a reward oriented planning problem identi-
fies a set of absorbing states. In addition to transition re-

Markovian rewards, associated with state transitions, can be
encoded using fluents. PPDDL reserves the fluentrd,
accessed ageward) orreward , to represent the total
accumulated reward since the start of execution. Rewards
are associated with state transitions through update rules in
action effects. The use of theward fluent is restricted to
action effects of the form

( (additive-op (reward fluent (f-exp ) wards specified in action effects, it is possible to associate a
where (additive-op is eitherincrease  or decrease one-time reward for entering a goal state. This is done using
and (f-exp is a numeric expression not involvingward. the (:goal-reward f) construct, wherg’ is a numeric
Action preconditions and effect conditions are not allowed exlpressmn.l tat metri - .
to refer to thereward fluent, which means that the accu- h general, a sta eme(imetric maximize f)ina
mulated reward does not have to be considered part of the Problem definition means that the expected valugstiould

be maximized. PPDDL definagoal-probability as

state space. The initial value efward is zero. These re-
strictions on the use of theward fluent allow a planner to
handle domains with rewards, without having to implement
full support for fluents.
The requirements flagrewards , is introduced to sig- .
nal that support for Markovian rewards is required. Do- Formal Semantics
mains that require both probabilistic effects and rewards We present a formal semantics for PPDDL planning prob-
can declare themdp requirements flag, which implies  lems in terms of a mapping to a probabilistic transition sys-
:probabilistic-effects and:rewards . tem with rewards. A planning problem defines a set of state
Figure 2 shows part of the PPDDL encoding of a coffee variablesV, possibly containing both Boolean and numeric
delivery domain described by Dearden & Boutilier (1997). state variables. An assignment of values to state variables
A reward of 0.8 is awarded if the user has coffee when defines a state, and the state sp&aaf the planning prob-
the “buy-coffee” action is executed, and a rewardOdf lem is the set of states representing all possible assignments
is awarded when “buy-coffee” is executed in a state where of values to variables. In addition g, a planning prob-

a special optimization metric that can be used to explicitly
specify that the plan objective is to maximize (or minimize)
the probability of goal achievement.
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(define (domain coffee-delivery)

(:requirements :negative-preconditions :disjunctive-preconditions

:conditional-effects :mdp)

(:predicates (in-office) (raining) (has-umbrella) (is-wet)

(has-coffee) (user-has-coffee))
(:action buy-coffee

.effect (and (when (not (in-office)) (probabilistic 0.8 (has-coffee)))
(when (user-has-coffee) (increase (reward) 0.8))
(when (not (is-wet)) (increase (reward) 0.2))))

Figure 2: Part of PPDDL encoding of “Coffee Delivery” domain.

lem defines an initial-state distributign : S — [0, 1] with
> sesPo(s) = 1 (i.e. po is a probability distribution over
states), a formula overV characterizing a set of goal states
G = {s| s = ¢}, a one-time reward associated with en-
tering a goal state, and a set of actiohénstantiated from
PPDDL action schemata. For goal-directed planning prob-
lems, without explicit rewards, we usge = 1.

An actiona € A consists of a precondition, and an
effecte,. Action a is applicable in a state if and only if
s | ¢q. Itis an error to apply: to a state such that j~=
¢.. This is consistent with the semantics of PDDL2.1 (Fox
& Long 2003) and permits the modeling of forced chains
of actions. Effects are recursively defined as follows (cf.
Rintanen 2003):

1. T is the null-effect, represented in PPDDL {@and) .
2. band—b are effects ih € V is a Boolean state variable.

3. ¢z «— fis an effect ifxr € V is a numeric state variable
andf is a real-valued function on numeric state variables.

r 1 fis an effect iff is a real-valued function on numeric
state variables.

e1 N\ ... Ney,isan effectife,..., e, are effects.
c>eis an effect ifc is a formula ovel ande is an effect.
piei| ... |pnen isaneffectifey,. .., e, are effectsp; > 0
foralli e {1,...,n},and>_" , p; = 1.

Items 2 through 4 are referred tosimple effectThe effect

b sets the Boolean state variabl¢o true in the next state,
while —b setsb to false in the next state. Far «— f, the
value of f in the current state becomes the value of the nu-
meric state variable in the next state. Effects of the form

4.

5.
6.
7.

r 1 f are used to associate rewards with transitions as de-

scribed below.

An actiona = (¢,,e,) defines a transition probability
matrix 1, and a transition reward matrig,,, with p{; being
the probability of transitioning to statgwhen applymga
in state:, andr{; being the reward associated with the state
transition from: to 5 when caused by. We can compute
P, and R, by first translating, into an effect of the form
pie1] ... |pnen, Where eacle; is a deterministic effect. Rin-
tanen (2003) calls this form Unary Nondeterminism Normal
Form. Any effecte can be translated into this form by using
the top four equivalences in Figure 3.

We further rewrite the effect of an action by translating
eache; into an effect of the fornfc;; > e;1) A ... A (¢in, >
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ein; )» Where eacle;; is a conjunction of simple effects and
the conditions are mutually exclusive and exhaustive (i.e.
cijNeip = Lforallj #k and\/}i1 ¢;j = T). The bottom
four equivalences in Figure 3 allow us to perform the desired
translation.

An effect of the forme > e, wheree is a conjunction of
simple effects, defines a set of state transitions. We assume
that e is consistent. Actions with inconsistent effects are
not valid PPDDL actions, and care should be taken when
designing a PPDDL domain to ensure that no instantiations
of action schemata can have inconsistent effects. A con-
junction of simple effects is inconsistent if it contains both
b and—b, or multiple non-commutativeipdates of a single
numeric state variable. Two effects— f andxz «— [’ are
commutative iff (s[z = f/(s)]) = f'(s[x = f(s)]), where
f(s) is the value off evaluated in state ands[x = y] de-
notes a state with all state variables having the same value
as in states, except forz which has valugy, i.e. numeric
effects are commutative if they are insensitive to ordering.
Under these assumptions, the following function can be de-
fined:

7(s,8", T)=s
7(s,8',b)=s'lb="T]
T(s,8",—b)=s"[b= 1]
7(s, s’ 33<—f)=8 [z = f(s)]
)=

T(s,8,r 1 f

T(s,8",e1 Nea)=7(s,7(s,5",e1),e2)

We can use to describe the set of state transitions defined
by the effectc > e:

T(c>e)={(s,s')|s Ecands’ = 7(s,s,e)}.

Given this definition ofl’(c > e), we can compute a tran-
sition matrix7;; for eachc;; > e;;. The element at rovy
and columns’ of T}, is 1 if (s,s") € T(c;; > e;5), and0
otherwise. Since we have ensured that the conditgrare
mutually exclusive, we geP, = Y7, p;T; as the transi-
tion probability matrix for actior:, whereT; = Z]: Ti;.
Finally, we need to make all states that satisfy the goal con-
dition ¢ of the problem absorbing. This is accomplished by
modifying P,: for eachs such thats = ¢, we set the entry
at row s and columns to 1 and the remaining entries on the
same row td.
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e =le

e (prer] ... |pren) =pi(e Ner)| ... |pn(e Ney)
ct> (pre1] ... |pnen) =p1(c>eq)|. .. |pnlc> en)
pr(pierl. . [pker)peeal . . Ipnen =(p1p))el - . . [(p10k)e p2esl - - - [Pnen

e=Tr>e

c>e=(c>e)A(-e>T)
c>(d>e)=(ecnd)>e
(c1>er) A(ca>er) =((c1 Aea) > (e1 Aea)) A((cr A—cg) B> eq)
A((me1 Aeg) > ea) A((—er A—e) > T)

Figure 3: Effect equivalences.

The reward associated with a conjunction of simple ef-
fects can be defined as follows:

r(s, T)=0
(s, b)=0
r(s,—b)=0
r(s,x «— f)=0
r(s,r 1 f)=f(s)

r(s,e1 Aea)=r(s,e1) + e(s, ez)

The effectc;; > e;; associates rewart(s, e;;) with each
transition(s, s’) € T(c;; > e;;). We define a transition re-
ward matrix R;; for ¢;; > e;;. The element at row and
columns’ of R;; is r(s,e;;) for s’ = 7(s,s,e;;) andO if
(s,s") ¢ T;;. We then sum over all;; > ¢;; to get a transi-
tion reward matrix for;: R; = Z?;l R;j.

The same transition may occur in multiple outcomes of
the effectpieq]. .. |pnen, and we require the reward for a
specific transition to be consistent across outcomes.eLet

represent the fact that the reward is undefined for a transi-

tion. We defineR; to be R; with an element at row and
columns’ set toe if the element at rovs and columns’ of
T; is zero (i.e.e; does not define a transition frosto s).
We define an element-wise matrix operatoas follows:

e O xr=x

T O e=x

T O r=x

xOy=errorif x £y
We can now define the transition reward matrix for action
R, = Re¢ + O}, R;i. R¢ represents the one-time reward
associated with goal states. The entry at koand column

s’ of Rg is settorg if s = ¢ ands’ = ¢, and0 otherwise.
The transition reward matrix is well-defined if and only if

the transition rewards are consistent across all outcomes of

an action.
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Abstract

We describe the version of the GPT planner to be
used in the planning competition. This version,
called mGPT, solves MDPs specified in the PPDDL
language by extracting and using different classes of
lower bounds, along with various heuristic-search al-
gorithms. The lower bounds are extracted from de-
terministic relaxations of the MDP where alternative
probabilistic effects of an action are mapped into
different, independent, deterministic actions. The
heuristic-search algorithms, on the other hand, use
these lower bounds for focusing the updates and deliv-
ering a consistent value function over all states reach-
able from the initial state with the greedy policy.

Introduction

mGPT is a planner based on heuristic search for
solving MDP models specified in the high-level plan-
ning language PPDDL. mGPT captures a fragment
of the functionality of the GPT system that fea-
tures non-determinism and incomplete information, in
both qualitative and probabilistic forms, like POMDPs
and Conformant planning (Bonet & Geffner 2001a;
Bonet & Thiébaux 2003).

mGPT supports several algorithms and heuristic
functions (lower bounds) that when combined generate
a wide range of different solvers. The two main algo-
rithms are 1lrtdp and hdp. Both are heuristic-search
algorithms that make use of a given initial state so and
lower bound information. More precisely, they com-
pute a value function V' with a residual bounded by a
user-provided threshold over all states reachable from
so when using the greedy policy 7y (Bonet & Geffner
2003b; 2003a).

The lower bounds are derived by solving relax-
ations of the input problem with an algorithms pro-
vided by mGPT. Since these algorithms are also based
on heuristic search, we have implemented “stackable”
components that are created in sequence for computing
complex heuristic functions from simpler ones.

In this short document, we describe the features
of the mGPT planner. This document is organized
as follows. In the following two sections, we give a
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brief description of the most important algorithms and
heuristics functions implemented in mGPT. Then, we
describe how these algorithm and heuristics can com-
bined in order to generate a wide range of different
solvers. We conclude with a short discussion.

Algorithms

We divide the algorithms in two groups of optimal and
suboptimal algorithms.

An optimal algorithm is one that computes an e-
consistent value function V' over all states reachable
from the initial state so with the greedy policy with
respect to V', denoted as my. A value function V is
e-consistent at state s if it residual at s is less than or
equal to e. It is known that if V' is O-consistent over all
states reachable from sy with 7y, then 7y is optimal,
as well as if V' is e-consistent for a sufficiently small e.
Here € is a user-provided parameter.

The suboptimal algorithms, on the other hand, are
provided in order to interleave planning and execution.
In this group, we include algorithms that start selecting
actions with respect to an initial lower bound (heuris-
tic) that is improved over time.

(Although our main interest is towards optimal algo-
rithms, we have included the suboptimal ones in order
to cope with the format of the competition.)

The main optimal algorithms are vi, 1rtdp and hdp,
whilst the suboptimal ones are asp and hdp-i. In the
following, we give a brief description and references for
these algorithms.

The Value Iteration algorithm (vi) solves the prob-
lem in two steps. First, it generates the reachable state
space from the initial state and the applicable opera-
tors, and second, uses the Value Iteration algorithm
to obtain an optimal solution for the problem. vi is
included in mGPT as a bottom-line reference.

Labeled Real-Time Dynamic Programming (1rtdp)
is a heuristic-search algorithm that implements a la-
beling scheme on top of the rtdp algorithm (Barto,
Bradtke, & Singh 1995). 1rtdp works by performing
simulated trials that start at the initial state and end
at “solved” states by selecting actions with respect to
my. Initially, V' is the input heuristic function, and
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the only solved states are the goal states. Then, each
time an action is picked at state s, the value of s is
updated by making its value consistent with the value
of its successor states. At the end of each trial, a label-
ing procedure is called that checks whether new states
can be labeled as solved: a state is solved if its value
and the value of all its descendents are e-consistent.
The algorithm ends when the initial state is labeled
solved since, at that time, all states reachable from sg
with 7y are consistent. As shown in (Bonet & Geffner
2003b), this labeling mechanism adds a crisp termina-
tion condition to rtdp that features faster convergence
time while retaining its good anytime behavior.

Since 7y, the policy returned by 1rtdp, is only guar-
anteed to be optimal over a subset of states, i.e. sg and
those reachable from it, then 7y is said to be a partial
optimal policy closed with respect to sg.

Heuristic Dynamic Programming (hdp) is also a
heuristic-search algorithm that computes a partial op-
timal policy closed with respect to sg. The hdp al-
gorithm works by performing depth-first searches in
state space looking for e-inconsistent states, and then
updating their values to make them consistent. The
searches are stopped when no inconsistent states are
found (Bonet & Geffner 2003a).

Action Selection for Planning (asp) is a reactive al-
gorithm that starts by selecting actions with respect
to the input heuristic function. Each time an action
is needed for state s, asp performs multiple depth-
bounded rtdp-like trials starting at s before return-
ing an action for s. These simulations implement a
bounded-lookahead mechanism that improve the ac-
tion selection task. This asp algorithm is a general-
ization of (Bonet, Loerincs, & Geffner 1997) for prob-
abilistic planning.

Approximated Heuristic DP (hdp-i) is a heuristic-
search algorithm that like hdp performs searches and
updates. Unlike hdp, the hdp-i algorithm only en-
forces consistency over all states reachable from sg with
plausibility no smaller than i. These plausibility lev-
els form a qualitative scale based on kappa rankings
(Spohn 1988; Pearl 1993) that quantify how improb-
able is to make a transition from the initial state to
the given state. The hdp-i algorithm and some of its
properties are described in (Bonet & Geffner 2003a).

Heuristics

The heuristics functions are also divided in two groups
of admissible and non-admissible heuristics. An ad-
missible heuristic is one that never overestimates the
optimal cost, i.e. a lower bound. The main admissible
heuristics are zero, min-min, atom-min-forward and
atom-min-backward, whilst the main non-admissible
heuristic is £f. All these heuristic are computed by
solving deterministic relaxations of the input problem.
In the case of admissible heuristics, these relaxations
must be solved optimally (Pearl 1983).

The most important relaxations are the weak and
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strong relaxations. The weak relaxation is computed
by transforming the input problem into a deterministic
problem in which every operator of the form

<Precv[p15041,---7pn504n]>a (1)

where prec is the precondition and «; is the i-th effect
with probability p;, is translated into the n determin-
istic and independent operators (prec, a; ).

It is not hard to show that the optimal solution for
the weak relaxation is a lower bound one the optimal
solution for the original problem.

The strong relaxation is a STRIPS problem computed
by firstly transforming the input into a problem in
which every operator is of the form

(prec,[p1 : (addi,dely),...,pn : (2addy,del,)]) (2)

where prec,addy,...,del, are all conjunctions of lit-
erals and >, p; = 1. Observe that in order to take
the input problem into the form given by (2), we must
remove disjunctive preconditions, conditional effects,
quantifier symbols, etc. The strong relaxation is then
generated by translating each operator (2) into the n
deterministic and independent STRIPS operators

(prec,add;,del; ).

(3)
As before, it is not hard to show that the optimal solu-
tion for the strong relaxation is a lower bound on the
optimal solution for the original problem.

In the following, we give a brief description of the
different heuristic and their relation to the relaxations.

The Min-Min (min-min) heuristic is the optimal so-
lution to the deterministic problem given by the weak
relaxation. Two flavors are provided: min-min-1lrtdp
that solves the relaxation with a deterministic version
of 1rtdp (a.k.a. 1rta (Korf 1990)), and min-min-idax
that solves the relaxation with IDA*. Both versions are
lazy in the sense that the values are computed on a
need basis as the planner requires them. See (Bonet
& Geflner 2003b; 2003a) for references. (Since the
min-min heuristic is computed with a heuristic-search
algorithm, another heuristic function is required for its
computation. Below, we describe how to specify these
multiple heuristics.)

Atom-Min Forward (atom-min-forward) is a heuris-
tic function computed in atom space from the strong
relaxation. atom-min-forward computes “costs” of
reaching set of atoms of fixed cardinality from a given
state. The name forward comes from the fact that
the costs are computed by a forward-chaining proce-
dure that begins with the given state and ends when
the goal is generated. This heuristic is a generaliza-
tion of the hmi, heuristic in HSP (Bonet & Geffner
2001b). As in min-min, the heuristic values are com-
puted on demand. atom-min-k-forward refers to the
atom-min-forward heuristic for sets of cardinality k.
The atom-min-forward heuristic is from (Haslum &
Geffner 2000).

Atom-Min Backward (atom-min-backward) is a
heuristic similar to atom-min-forward except that it
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computes costs of reaching sets of atoms from the goal
state in an inverted version of the strong relaxation.
Thus, before the search starts, all costs for all sets of
atoms of fixed cardinality are computed and stored in a
table that are later used to compute the heuristic func-
tion. The inverted relaxation is described in (Bonet &
Geffner 2001b).

The FF (££) heuristic implements the heuristic func-
tion used in the FF planner with respect to the strong
relaxation (Hoffmann & Nebel 2001). This heuristic is
informative but non-admissible and can only be used
for non-optimal planning.

Combining Algorithms and Heuristics

The main parameters for mGPT are “-p <planner>”

that specify the algorithm to use for the planner, “~h
<heuristics>” that specify the heuristic function, and
“~e <epsilon>” that specify the threshold e for the
consistency check.

One typical call looks like

mGPT -p lrtdp \

-h "atom-min-1-forward" \

-e .001 <rest>
which instructs mGPT to use the lrtdp algorithm
with the atom-min-1-forward heuristic and ¢ = 0.001.
Since the algorithm is optimal and the heuristic is ad-
missible, this call produces an optimal policy. The
atom-min-1-forward heuristic is admissible but very
weak. The following example shows how to use the
min-min-1lrtdp heuristic using atom-min-1-forward
as the base heuristic:

mGPT -p lrtdp \
-h "atom-min-1-forward|min-min-lrtdp" \
-e .001 <rest>

Note how the pipe symbol is used to stack the compo-
nents of the heuristic function.

Another possibility is to use mGPT as a reactive
planner in which decisions are taken on-line with re-
spect to a heuristic function that is improved over time.
For example,

mGPT -p asp -h "ff" <rest>
uses the asp algorithm with the £f heuristic, while

mGPT -p asp -h "zero|min-min-idax" \
-e .001 <rest>

uses the asp algorithm with the min-min-ida* heuris-
tic computed from the constant-zero heuristic. In the
first case, the heuristic being used is non-admissible,
so the planner will deliver a suboptimal policy. In the
latter case, the asp algorithm is seeded with an ad-
missible heuristic so it is guaranteed to converge to a
partial optimal policy as the number of trials increase.

Other combinations of algorithms and heuristics are
possible. mGPT also implements other heuristic func-
tions and parameters to control number of simulation
trials and cutoff length for asp, initial hash size, heuris-
tic weight, dead-end value, verbosity level, etc.
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Discussion

At the moment of writing these pages, it is not clear
for us which combination of algorithm and heuristic is
going to be used during the competition. Moreover, we
could enter the competition either with a fixed choice,
or with a more complex planner that picks a choice
upon an analysis of the input problem. In any case, we
plan to evaluate (after the competition) the different
choices separately in order to obtain meaningful data
for future research.

The mGPT planner will be publicly available after
the competition with the default settings correspond-
ing to those actually used.
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Abstract

We describe a planner that participates in the Probabilis-
tic Planning Track of the 2004 International Planning Com-
petition. Our planner integrates two approaches to solving
Markov decision processes with large state spaces. State ab-
straction is used to avoid evaluating states individually. For-
ward search from astart state, guided by an admissible heuris-
tic, isused to avoid evaluating all states.

I ntroduction

The 2004 International Planning Competition introduces,
for the first time, a probabilistic planning track. The under-
lining model of the planning problem is essentially a Markov
decision process (MDP), and is encoded using an extension
of the PDDL language, called the Probabilistic PDDL. Clas-
sic dynamic programming algorithms solve MDPs in time
polynomial in the size of the state space. However, the
size of the state space grows exponentially with the number
of features describing the problem. This “state explosion”
problem limits use of the MDP framework, and overcoming
it has become an important topic of research.

Over the past several years, approaches to solving MDPs
that do not rely on complete state enumeration have been
developed. One approach exploits a feature-based (or fac-
tored) representation of an MDP to create state abstractions
that allow the problem to be represented and solved more
efficiently (Dearden & Boutilier 1997; Hoey et al. 1999;
and many others). Another approach limits computation
to states that are reachable from the starting state(s) of the
MDP (Barto, Bradtke, & Singh 1995; Dean et al. 1995;
Hansen & Zilberstein 2001). Our planner integrates these
approaches in a unifying framework using symbolic model-
checking techniques, based on the symbolic LAO* and sym-
bolic RTDP algorithms we previously developed (Feng &
Hansen 2002; Feng, Hansen, & Zilberstein 2003). In this
paper we present a brief summary of these algorithms.

Factored MDPs and decision diagrams

A Markov decision process (MDP) is defined as a tuple
(S, A, P,R) where: S is a set of states; A is a set of ac-
tions; P is a set of transition models P* : S x S — [0, 1],
one for each action, specifying the transition probabilities of
the process; and R is a set of reward models R* : S — R,
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one for each action, specifying the expected reward for tak-
ing action «a in each state. We consider MDPs for which the
objective is to find a policy 7 : S — A that maximizes to-
tal discounted reward over an infinite (or indefinite) horizon,
where v € [0, 1] is the discount factor. (We allow a discount
factor of 1 for indefinite-horizon problems only, that is, for
MDPs that terminate after a goal state is reached.)

In a factored MDP, the set of states is described by a set of
random variables X = {X3,..., X,,}. Without loss of gen-
erality, we assume these are Boolean variables. A particular
instantiation of the variables corresponds to a unique state.
Because the set of states S = 2% grows exponentially with
the number of variables, it is impractical to represent the
transition and reward models explicitly as matrices when the
number of states variables is large. Instead we follow Hoey
et al.(1999) in using algebraic decision diagrams to achieve
a more compact representation.

Algebraic decision diagrams (ADDs) are a generalization
of binary decision diagrams (BDDs), a compact data struc-
ture for Boolean functions used in symbolic model checking.
A decision diagram is a data structure (corresponding to an
acyclic directed graph) that compactly represents a mapping
from a set of Boolean state variables to a set of values. A
BDD represents a mapping to the values 0 or 1. An ADD
represents a mapping to any finite set of values. To repre-
sent these mappings compactly, decision diagrams exploit
the fact that many instantiations of the state variables map
to the same value. In other words, decision diagrams ex-
ploit state abstraction. BDDs are typically used to represent
the characteristic functions of sets of states and the tran-
sition functions of finite-state automata. ADDs can repre-
sent weighted finite-state automata, where the weights cor-
respond to transition probabilities or rewards, and thus are
an ideal representation for MDPs.

Hoey et al. (1999) describe how to represent the transi-
tion and reward models of a factored MDP compactly using
ADDs. We adopt their notation and refer to their paper for
details of this representation. Let X = {X;,..., X, } rep-
resent the state variables at the current time and let X’ =
{X{1,..., X/} represent the state variables at the next step.
For each action, an ADD P*(X,X’) represents the transi-
tion probabilities for the action. Similarly, the reward model
R*(X) for each action a is represented by an ADD. The ad-
vantage of using ADDs to represent mappings from states
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(and state transitions) to values is that the complexity of op-
erators on ADDs depends on the number of nodes in the
diagrams, not the size of the state space. If there is sufficient
regularity in the model, ADDs can be very compact, allow-
ing problems with large state spaces to be represented and
solved efficiently.

Symbolic LAO* algorithm

LAO* (Hansen & Zilberstein 2001) is an extension of the
classic search algorithm AO* that can find solutions with
loops. This makes it possible for LAO* to solve MDPs,
since a policy for an infinite-horizon MDP allows both con-
ditional and cyclic behavior. Like AO*, LAO* has two al-
ternating phases. First, it expands the best partial solution
(or policy) and evaluates the states on its fringe using an ad-
missible heuristic function. Then it performs dynamic pro-
gramming on the states visited by the best partial solution,
to update their values and possibly revise the currently best
partial solution. The two phases alternate until a complete
solution is found, which is guaranteed to be optimal.

AO* and LAO* differ in the algorithms they use in the dy-
namic programming step. Because AO* assumes an acyclic
solution, it can perform dynamic programming in a single
backward pass from the states on the fringe of the solution
to the start state. Because LAO* allows solutions with cy-
cles, it relies on an iterative dynamic programming algo-
rithm (such as value iteration or policy iteration). In orga-
nization, the LAO™* algorithm is similar to the “envelope”
dynamic programming approach to solving MDPs (Dean et
al. 1995). Itis also closely related to RTDP (Barto, Bradtke,
& Singh 1995), which is an on-line (or “real time”) search
algorithm for MDPs, in contrast to LAO*, which is an off-
line search algorithm.

We call our generalization of LAO* a symbolic search al-
gorithm because it manipulates sets of states, instead of indi-
vidual states. In keeping with the symbolic model-checking
approach, we represent a set of states S by its characteristic
function yg, sothat s € S <= xs(s) = 1. We repre-
sent the characteristic function of a set of states by an ADD.
(Because its values are 0 or 1, we can also represent a char-
acteristic function by a BDD.) From now on, whenever we
refer to a set of states, .S, we implicitly refer to its character-
istic function, as represented by a decision diagram.

In addition to representing sets of states as ADDs, we rep-
resent every element manipulated by the LAO* algorithm as
an ADD, including: the transition and reward models; the
policy 7 : S — A, the state evaluation function V' : § — R
that is computed in the course of finding a policy; and an ad-
missible heuristic evaluation function 4 : S — R that guides
the search for the best policy. Even the discount factor ~ is
represented by a simple ADD that maps every input to a
constant value. This allows us to perform all computations
of the LAO* algorithm using ADDs.

Besides exploiting state abstraction, we want to limit
computation to the set of states that are reachable from the
start state by following the best policy. Although an ADD
effectively assigns a value to every state, these values are
only relevant for the set of reachable states. To focus com-
putation on the relevant states, we introduce the notion of
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masking an ADD. Given an ADD D and a set of relevant
states U, masking is performed by multiplying D by xv.
This has the effect of mapping all irrelevant states to the
value zero. We let Dy denote the resulting masked ADD.
(Note that we need to have U in order to correctly interpret
Dy). Mapping all irrelevant states to zero can simplify the
ADD considerably. If the set of reachable states is small, the
masked ADD often has dramatically fewer nodes. This in
turn can dramatically improve the efficiency of computation
using ADDs.

Symbolic LAO* does not maintain an explicit search
graph. It is sufficient to keep track of the set of states that
have been “expanded” so far, denoted G, the partial value
function, denoted V¢, and a partial policy, denoted 7. For
any state in G, we can “query” the policy to determine its
associated action, and compute its successor states. Thus,
the graph structure is implicit in this representation. Note
that throughout the whole LAO* algorithm, we only main-
tain one value function V" and one policy 7. Vi and 7 are
implicitly defined by G and the masking operation.

Symbolic RTDP

Recall that RTDP performs a DP update while interacting
with the environment. At each time step ¢, the agent ob-
serves the current state s, and performs a DP backup to up-
date its value, as follows:

Vitl(s) « max {Ra(st) +7 Z P%(sy, s/)Vt(s’)} .

s'es
(1)
The values of all other states are kept unchanged, that is, for
all s # sy
Vit (s) = Vi(s).

If the initial value function is an admissible estimate of the
optimal value function, then an agent can always take the
action that maximizes Equation (1). Otherwise some explo-
ration scheme must be used in choosing actions, in order to
ensure convergence. After an action is taken, the agent ob-
serves the resulting state and the cycle repeats.

The advantage of RTDP over standard DP is that it uses an
on-line trajectory of states, beginning from the start state, to
determine what states to update and to avoid computations
on unlikely states. However, the enumerative nature of the
trajectory sampling is a bottleneck for further performance
improvement. When the state space is large enough, a state
by state update becomes hopelessly inefficient, especially if
the sampling involves carrying out physical actions. SRTDP
helps overcome this inefficiency by generalizing the update
from a single state to an abstract state, using symbolic model
checking techniques.

We extend the idea of masking in symbolic LAO* to
SRTDP by performing DP on the abstract state F that the
current state s belongs to. Symbolic model-checking pro-
vides us with convenient and efficient techniques to group
states as abstract states and to manipulate these abstract
states. There are many ways to group states into abstract
states. We present two heuristic approaches that are moti-
vated by the idea of generalization by structural similarity. A
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value-based abstract state consists of states whose value es-
timates are close to that of the current state. A reachability-
based abstract state consists of states that share with the cur-
rent state a similar set of successor states. Unlike SPUDD,
we explicitly construct this abstract state at each time step of
SRTDP, using standard ADD model-checking operators.

Generalization by Value With a value-based abstract
state, the experience is generalized to states that have sim-
ilar value estimates as the current state. The intuition is
that states with similar optimal values may also be similarly
desirable. Generalizing updates to states with similar esti-
mated values helps the agent in two ways. First, if some of
these states indeed have similar optimal value as the current
state, the update strengthens this similarity and the agent is
better informed in the future when these states are visited
again. Second, if some of the states have very different op-
timal value than the current state, the generalization helps to
distinguish them and avoid computations on them in the fu-
ture when the same state as the current state is visited again.

Generalization by Reachability With a reachability-
based abstract state, the experience is generalized to states
that are similar to the current state in terms of the set of one-
step reachable states. The intuition here is that if the agent
is going to visit some states, say C, from the current state s,
then any information about C' is useful not only to s but also
to other states that can reach C. By generalizing the update
to these other states the agent is better informed in the future
whether to aim at C' or to avoid it.

To compute the abstract state based on reachability, we
introduce two operators from the model-checking literature.
The I'mg(C') operator computes the set of one-step reach-
able states from states in C, and the PreImg(C') operator
computes the set of states that can reach some state in C'in
one step. The reachability-based abstract state £ can then
be computed as:

E = PreImg(Img({s})) — PreImg(S — Img({s})).

Once the set E' is computed, it is used to mask the current
value function before perform the DP update. After the up-
date, an action is chosen that maximizes the DP update at
state s. The agent then carries out the action, and the pro-
cess repeats.

Although both symbolic LAO* and sRTDP use a
“masked” DP update, the masks they use are different and
serve different purposes. The mask in symbolic LAO* con-
tains all states visited so far by the forward search step.
The purpose of masking is to restrict computation to rele-
vant states. The mask in SRTDP contains states that share
structural similarity. The purpose of masking is to general-
ize update on a single state to an abstract state. This general-
ization has two consequences. It introduces some overhead
in the DP step, including identifying the abstract state, and
preforming masked DP instead of single-state DP. On the
other hand, it updates the value of a group of states in a sin-
gle step, at a cost that can be significantly less than updating
the states separately. For problems that are large enough yet
have special
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Admissible heuristics

Both LAO* and (model-based) RTDP use an admissible
heuristic to guide the search. From the initial release of the
sample test problems from the planning competition, it is
possible to design domain specific heuristic functions. On
the other hand, if such a heuristic is not available, we can
always revert to a simple heuristic using approximate dy-
namic programming. Given an error bound on the approxi-
mation, the value function can be converted to an admissible
heuristic. (Another way to ensure admissibility is to perform
value iteration on an initial value function that is admissi-
ble, since each step of value iteration preserves admissibil-
ity.) Symbolic dynamic programming can be used to com-
pute an approximate value function efficiently. St. Aubin et
al. (2000) describe an approximate dynamic programming
algorithm for factored MDPs, called APRICODD, that is
based on SPUDD. It simplifies the value function ADD by
aggregating states with similar values. Another approach to
approximate dynamic programming for factored MDPs de-
scribed by Dearden and Boutilier (1997) can also be used to
compute admissible heuristics.
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Abstract

We discuss NMRDPP, a system for solving decision pro-
cesses with non-Markovian reward. More specifically, target
decision processes exhibit Markovian dynamics and reward-
ing behaviours are modelled as state trajectories specified in a
linear temporal logic. In addition to implementing structured,
tabular and online MDP solution algorithms, NMRDPP can
exploit domain specific control knowledge. State trajectories
which violate the users knowledge/intuition regarding use-
ful dynamics can be pruned from consideration by the MDP
solution algorithm. Thus, in addition to facilitating concise
specification of complex reward structures, NMRDPP can be
used to greatly speed up policy computation for propositional
MDPs. To our knowledge, NMRDPP is the only implemen-
tation of solution algorithms designed to solve decision pro-
cesses with non-Markovian rewards.
Introduction

NMRDPP (Gretton et al. 2003) (non—Markovian Reward
Decision Process Planner), is a general purpose planner for
non-Markovian reward' (and hence also Markovian) propo-
sitional decision processes. Target decision processes are
usually stochastic, exhibiting Markovian dynamics. The re-
ward is modelled as a set of state trajectories, called be-
haviours, specified in a linear temporal logic. NMRDPP was
originally developed in order to carry out an experimental
evaluation of approaches for solving decision processes with
non-Markovian reward. Implemented in C++, NMRDPP
supports a range of experimental algorithms and frameworks
for solving NMRDPs. It is suited to participation in IPPC’04
as it facilitates planning in completely observable stochastic
domains. NMRDPP is the first of its kind; previously no ap-
proaches to solving NMRDP had been fully implemented,
and there was no work presenting any experimental results.

There have been two proposals regarding languages suit-
able for expressing rewarding behaviours. These include
PLTL (Bacchus et al. 1996) a linear temporal logic of the
past and $SFLTL (Thiébaux et al. 2002) a linear tempo-
ral logic of the future with reward. In either case, NM-
RDPP translates NMRDPs into corresponding equivalent
MDPs (XMDPs) which incorporate temporal variables cap-
turing sufficient history to make the reward of the expanded

'For our purposes reward can be negative, thus we don’t distin-
guish between reward and cost.
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process Markovian®. Available translation procedures are

unique and not particularly straightforward (Bacchus et al.
1996; Bacchus et al. 1997; Thiébaux et al. 2002). NM-
RDP solution algorithms differ in their representations of
domain dynamics, the XMDP and in the class, structured or
non-structured, of MDP solution methods to which they are
tied. NMRDPP can solve target decision problems online
(during translation) using LAO* heuristic search techniques
(Hansen and Zilberstein 2001). Alternatively, the complete
XMDP can be generated and passed to classical structured
or tabular policy computation algorithms such as SPUDD
(Boutilier et al. 1995; Hoey et al. 1999) or policy/value
iteration (Howard 1960) respectively.

Using the same mechanisms devised for non-Markovian
reward, state trajectories which violate the users knowl-
edge/intuition regarding useful dynamics can be pruned
from consideration by the MDP solution algorithm. The
specification of a set of such state sequences is called control
knowledge, and has been used to great effect by the deter-
ministic planning community (Bacchus and Kabanza 2000).
Thus, although there is no advantage to be gleaned from con-
cise specification of complex non-Markovian reward during
the competition, NMRDPP can exploit control knowledge
to greatly speed up policy computation given propositional
MDPs. By pruning states which violate specific behaviours,
we can mitigate the effect of Bellman’s so called curse of
dimensionality.

In the remainder of this document, we shall present an
overview of MDPs and NMRDPs and discuss their differ-
ences. We shall briefly discuss the logics that have been
adopted to model reward and control knowledge, focusing
in particular on $FLTL. We shall provide some examples of
using $FLTL to specify control knowledge for a stochastic
blocks-world domain. We shall conclude by summarising
how we intend to compete using NMRDPP in the IPPC’04.

MDPs and NMRDPs

Problem domains which participants shall consider during
the main and learning IPPC’04 tracks, although specified
in PPDDL1.0 (Younes and Littman 2004), can be mod-
elled using the MDP formalism. Indeed, decision theoretic

There is a mapping from XMDP states to the reals.
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planning problems are typically modelled as propositional
MDPs such that domain states .S are characterised by propo-
sitions, numeric reward is allocated to propositions/states
according to their associated desirability and the dynamics
of the system is given by actions A. We typically write A(s)
to denote actions applicable at state s. A solution algorithm,
provided with start states Sy C S, generates a stationary
policy # : S — A (mapping from states to actions) which
adherence to during system execution results in optimal be-
haviour over a discounted infinite horizon.

The standard MDP formulation is state based, comprising
a finite set of states .S and actions A. Actions induce stochas-
tic state transitions, where s,t € S, a € A and Pr(s,a,t)
gives the probability of a transition from state s to ¢ given
action a is executed at state s. Also present is a real-valued
reward function R : § — R. The value of a stationary policy
m at a state sg € So, V(7), is given by Equation 1.

V(r) = hmE[ZﬂZR Y| 7o €S| (1)

n—oo

Here [ is a discount factor usually close to 1 and I € §*
is a finite sequence of states where I'; is the ¢’th state in I'.

We consider a policy 7* optimal if, for all 7, we have that
V(r*) > V().

The formulation for NMRDPs is identical up to the re-
ward function whose domain is extended to S*, e.g. R :
S* — R. Here, I'(4) is the i length subsequence of " starting
atI'g. As before, the value of 7, which we seek to maximise,
is the expectation of the discounted cumulative reward over
an infinite horizon:

V(r) = lim E[Zﬁﬂ? N mTo€So| (2

n—oo

As introduced, NMRDP solution methods facilitate gen-
eration of an optimal policy by first expanding the NMRDP
into an XMDP, and then applying either traditional or struc-
tured MDP solution algorithms to the resulting construct.

Reward Specification and Control Knowledge

NMRDPP supports the use of two linear temporal logics
in the specification of rewarding state trajectories and con-
trol knowledge. These are PLTL (Bacchus ef al. 1996) and
$FLTL (Thiébaux et al. 2002). The logic PLTL includes the
modalities © (previously), S (since), & f = TS (once) and
Hf = -9 —f (always in the past) while $FLTL includes O¢
(next), U (weak until), ¢ = ¢ U L (always), and a propo-
sitional constant $ (receive reward now)>.

A translation from an NMRDP into a corresponding MDP
is based on the fact that a PLTL, resp. $FLTL, wff ¢ can be
regressed (Bacchus and Kabanza 2000), resp. progressed, to
a formula which identifies what must hold in the past, resp.
future, for ¢ to hold in a current state. Given this progres-
sion/regression operator, methods annotate grounded states

3See the respective papers for a comprehensive summary of the
two logics.

to form expanded states with formulae (temporal variables)
which are sufficient to determine the reward allocation at any
state reachable from Sy. Methods are characterised by the
properties of the XMDP which they generate. Given a PLTL
reward specification NMRDPP can attempt to generate the
minimal MDP required to allocate reward given specified
behaviours. Using the language $FLTL, NMRDPP is able to
produce a blind minimal XMDP online. Intuitively, a blind
minimal XMDP is the smallest MDP achievable by online
translation.

As a derivative of FLTL, $FLTL is particularly suitable
for expressing domain specific control knowledge (Bacchus
and Kabanza 2000) which is useful in the context of online
solution algorithms. That is, a decision process can be mod-
ified by excluding from it sequences of states which violate
a control hypotheses expressed in $FLTL.

Blocks-World with $SFLTL Control Knowledge

‘We have that a stochastic version of blocks-world will fea-
ture in the learning track at IPPC’04. Using the language of
PPDDL1.0, BW has block and table types, predicates
holding : block and On : (block X T), and two ac-
tion symbols pick-up : (block X T) and put—down :
(block x T). A BW state comprises two ground sets of
predicate symbols, those which characterise the current and
goal states. Pictorially, a BW state appears as follows:

”Vb.ﬁholding(b)
Goal:on(D, B),on(B, table), .
...,0n(C,table) D] D
Conf:0n(A, D),on(D, B), [c] [B]ume| [clalB] e
On (C table) Current Goal configuration
configuration

We have that the pick-up(a, b) action is only executable
iftable = aV fblock(c).0n(c,a) (i.e. a is clear). Simi-
larly put —down(a, b) is only available if holding(a) and
bisclear. Assuming precondition satisfaction, pick-up(a)
either causes block a to be held, or possibly fall on the
table. The action put—down(a, b) either drops a on the
table or places it on the second argument object b.

This stochastic BW isn’t particularly different from its
deterministic relatives. Thus, we can appeal to near opti-
mal planning strategies such as US and GN1 (Slaney and
Thiébaux 2001) in developing control knowledge. For
the purposes of this presentation we introduce the pred-
icate InPosition(a,b) for a and b of type block.
InPosition(a,b) is false if On(a,b) is not an element
of the goal configuration, and otherwise true when a and b
are in their goal position. Notice that this is a derived pred-
icate, i.e. given our example state, InPosition(D, B) =
on(D, B) A On(B,table). Thus, the following control
knowledge is expressible without change to the competition
specification.

The first piece of control knowledge that we consider pre-
vents NMRDPP from disturbing towers of blocks which sat-
isfy the goal. For each On(b;, b;), a control sentence of the
following form is sufficient:
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O( (on(bi,bj) A InPosition(b;,b;))
— (O=holding(b;)))

By pruning from a BW domain states which violate the
above sentence, NMRDPP will not consider policies which
disturb blocks that are in their goal position. We can further
prune the range of policies which NMRDPP shall consider
by noticing that if On(b;, b;) is false where b; is a block,
and after two action invocations On(b;, b;), then this is only
valuable where InPosition(b;,b;). This knowledge is
expressed in $FLTL as follows.

D( ("Ol’l(bi,bj) /\OO(OI’](bi,bj)))

— (OOInPosition(b;,b;)))
Annotating BW problems with the above control knowl-
edge greatly increases the situations in which NMRDPP is
competitive. Because progression of $FLTL formulae is lin-
ear time in the formula length, it is important that we avoid
crippling NMRDPP by providing too much, mostly redun-
dant or too complex knowledge. Furthermore, we must en-
sure that knowledge generation for competition domains is

practical.

Participation

NMRDPP, provides an implementation of several solution
approaches in a common framework, within a single sys-
tem, and with a common input language. The framework
includes a highly interactive command line interface which
allows the user to exert fine control over the planning pro-
cess. The input language enables specification of actions,
initial states, rewards, and control-knowledge. Initial states
are specified as part of the control knowledge or as explicit
assignments to propositions. Of interest to us here is the
format for the action specification, which is essentially the
same as in the SPUDD system (Hoey et al. 1999). In par-
ticular, the precondition (BDD), reward and probabilistic ef-
fects for each action are specified by a collection of decision
trees, including one for each domain proposition which the
action effects. When the input is parsed, the action specifi-
cation trees are converted into ADDs by the CUDD package
(Somenzi 2001).

The input language in which competition domains are
specified is PPDDL1.0. We will be able to accommodate
this in one of two ways. 1) Because both NMRDPP and
the competition software code are implemented in C++, we
can directly take advantage of competition code which fa-
cilitates exploration of the explicit propositionalised state
space. In this case we restrict NMRDPP to state-based so-
lution algorithms. 2) We can translate PPDDL1.0 problem
specifications into the NMRDPP input language. This is
an enticing option because the competition code contains
functionality implemented by Hékan L. S. Younes which
encodes grounded problem actions as ADDs. There is in-
sufficient space for us to include the details here, however
such grounded action ADDs can be converted into action
descriptions in the NMRDPP input format. In essence, such
a process extracts diachronic and synchronic dependencies
between propositions in an action’s conditional probabil-
ity model in order to construct decision trees/ADDs en-
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coding action preconditions, reward and effects on individ-
ual propositions. Where we generate NMRDPP input from
PPDDL1.0, the action specifications are not concise* as in-
formation regarding pre/post-action-variable dependencies
is lost in translation. The advantage however, is that we
do not restrict ourselves to a subset of solution algorithms
supported by NMRDPP.

We intend to enter NMRDPP in both the main and learn-
ing tracks of IPPC’04. In the main track we do not expect
much from NMRDPP as it is ladened with some overhead
due to support for non-Markovian reward. For the Learn-
ing Track, we shall develop “hand coded” control knowledge
specific to each competition domain in order to make NM-
RDPP competitive. Although this does not position us well
to compete with first-order learners which are not restricted
to a propositional domain model, we hope to be competi-
tive in small to medium domain instances. At the time of
writing, it was not clear which of the structured, tabular and
online algorithms NMRDPP supports, we shall use in the
competition.
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Introduction

FCPLANNER (Fluent Calculus Planner) is a planning sys-
tem that is based on the first-order value iteration algorithm
(FOVIA) (GroRmann, Wlldobler, & Skvortsova 2002) for
solving first-order MDPs. Following the idea of symbolic
dynamic programming (SDP) within the Situation Calcu-
lus by Boutilier and colleagues (Boutilier, Reiter, & Price
2001), FOVIA addresses the well-known scalability prob-
lem of the classical dynamic programming algorithms by

Olga Skvortsova
Institute for Artificial Intelligence
Dresden University of Technology

Dresden, Germany
skvortsova@inf.tu-dresden.de

underlying our automated symbolic dynamic programming
approach.

In FC, functions whose values vary from state to state
are calledfluentsand are denoted by function symbols. For
example, the fluenin(X, table) denotes the presence of a
block X on the table. Astateis a multiset of fluents rep-
resented as a term, calldéldient term using a constant
denoting the empty multiset and a binary function symbol
o denoting multiset union that is associative, commutative

employing the abstraction technique, i.e., a state space is @nd admits unit element. For example, a state in which the

divided into clusters, calledbstract statesand the value

block a is on the blockb andb is on the table is specified

functions are computed for them thereafter. The dynamics PY on(a,b) o on(b, table). Constants are denoted by small

of an MDP is formalized in the probabilistic Fluent Cal-
culus (pFC) that allows for introducing stochastic actions.

letters, variables by capital ones and substitutiong byo.
Abstract statesre characterized by means of conditions

Our approach constructs a first-order representation of value that must hold in each ground instance thereof and, thus,

functions and policies by exploiting the logical structure of
the MDP. Thus, FOVIA can be seen as a symbolic (logical)
counterpart of classical value iteration algorithm (Bellman
1957).

Abstract States

We formalize abstract states symbolically, within the Fluent
Calculus (FC) (Hlldobler & Schneeberger 1990). Fluent

Calculus, much like Situation Calculus, is a logical approach
to modelling dynamically changing systems based on first-
order logic. One could indeed argue that Fluent Calculus
and Situation Calculus have very much in common. But the
latter has the following disadvantage: Knowledge of the cur-
rent state is represented indirectly via the initial conditions

and the actions which the agent has performed up to a point.
As a consequence, each time a condition is evaluated in an

agent program, the entire history of actions is involved in the
computation. This requires ever increasing computational

effort as the agent proceeds, so that this concept does not

scale up well to long-term agent control (Thielscher 2004).
Fluent Calculus overcomes the aforementioned unfolding
problem by providing the crucial concept of an explicit state
representation. The information on what is true in the cur-
rent state of the world is effortlessly extracted from the state
description without tracing back to the initial state. There-
fore we have opted for Fluent Calculus as logical formalism

*Supported by the research training group GRK 334/3 (DFG).
Corresponding author.
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they represent sets of real-world states. Informally, ab-
stract states can be specified by stating that particular fluent
terms do or do not hold. We refer to such abstract states as
CN-stateswhereC stands for conjunction an¥ for nega-
tion, respectively.

Formally, let£ be a set of fluent terms. &N-stateis a
pair (P, '), whereP € £, N € 2. Let-™ be a mapping
from fluent terms to multisets of fluents, which can be for-
mally defined as follows1™ = {LorFM ={F},if Fis
afluent, or(F o G)M = FM ( GM, whereF, G are fluent
terms andJ is a multiset union. LeT = (A, -7) be an inter-
pretation, whose domaifi is the set of all finite multisets of
ground fluents and evei@N-stateZ = (P, \') is mapped
onto

7t ={deA|30.(POM CdA
VN € NVo.(NO)o)M & d}

whereC is a submultiset relation.

In other words, theP-part of a stateZ describes prop-
erties that a real-world state should satisfy, wher&és
part specifies the properties that are not allowed to ful-
fil. For example, theCN-state Z (on(X, table) o
red(X), {on(Y, X)}) represents all states in which there ex-
ists a red object that is on the table and clear, viz., none of
other objects coversiit.

Thus, the real-world state

z= {on(a, table), red(a), on(b, table), green(b)jL
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is specified byZ. Whereas,

2 = {on(a, table),red(a), on(b, a)}

is not.

Intuitively, CN-statesan be represented as first-order for-
mulae. The above-giveGN-stateZ corresponds to the fol-
lowing formula:

IX.on(X, table) Ared(X) AVY.—on(Y, X) .

Please note th&@N-stateshould be thought of as incom-

CN-state we have to examine its variables. If a disjunct con-
tains no ‘bad’ variables then it can be directly converted into
a respectiveCN-state Otherwise, the formula itself needs
an additional treatment.

The procedure of marking variables as ‘bad’ works as
follows: If a variable occurring within a positive literal is
bounded universally then it is marked as ‘bad’. Intuitively,
based on the semantics GN-statesthe variables that oc-
cur in the P-part of aCN-stateare considered existentially
bounded. Each ‘bad’ variable is eliminated via groundiza-
tion.

plete state descriptions, i.e., the properties that are not listed  For example, in the following formula

in either P- or A/-part can hold or not.

Stochastic Actions

The technique for introducing stochastic actions within the
probabilistic Fluent Calculus is to decompose a stochastic
action into deterministic primitives under nature’s control,
referred to asature’s choices We use a relation sym-
bol choice’2 to model nature’s choice. Consider the action
putdown(T, B) of putting a blockT” down onto a blockB
from the blocksworld scenario:

choice(putdown (T, B), A) <
(A = putdown; (T, B) V A = putdowns (T, B)),

where putdown, (T, B) and putdowns (T, B) define two
nature’s choices for actioputdown(T, B). The nature’s
choiceputdown, (T, B) states the successful putting of the
block T" down ontoB. Whereasputdowns (T, B) defines
the failure execution of theutdown-action which results in
the blockT falling down on the table.

For each of nature’s choices;(X) associated with an
action a(X) with parametersX we define the probabil-
ity prob(a;(X),a(X),Z). It denotes the probability with
which one of nature’s choices (X) is chosen in £N-state
Z. For example,

prob (putdown, (T, B), putdown(T, B), Z) = .7

states that the probability for the successful execution of the
putdown action inZ is .7.

FOVIA is an iterative approximation algorithm for con-
structing optimal policies. The difference to classical case is
that it produces a first-order representation of optimal poli-
cies by utilizing the logical structure of MDP. The algorithm
itself can be found in (Gromannpiidobler, & Skvortsova
2002).

Preprocessing

In order to convert a PPDDL goal description into a goal
state space that is used as an input of our FOVIA algorithm,
we have designed a procedure for translating first-order for-
mulae into a set o€N-states

Since a state space is considered as a disjunction of

CN-stateswe first convert a FO formula into DNF. We start
with pushing all quantifiers in front of the formula and con-
vert the quantifier-free part into DNF thereof. In order to
check whether a disjunct can be directly converted into a
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VX.3Y.red(X) A blue(Y)

the variableX will be marked as ‘bad’.

Assume that we have only two blocksandb in the do-
main. After eliminatingX (and slight simplification), we
obtain:

red(a) A red(b) A 3Y.blue(Y) .

The variableY” will not be marked as ‘bad’, hence, it will not
be grounded. Similarly, the negative literals are checked for
‘bad’ variables. The same technique for eliminating ‘bad’
variables is applied for action descriptions.

Although our approach relies on partial groundization of
state and action descriptions, there are domains, e.g., colored
blocksworld, where most variables are marked as ‘good’,
and hence, need not be grounded.

Regression of Abstract States

The classical as well as first-order value iteration algorithms
are intimately related to regression of states. The crucial dif-
ference of the symbolic value iteration is that the regression
is performed on the abstract states instead of the single states
themselves.

Given aCN-stateZ and an action descriptiod, our re-
gression procedure produces the set of all possible predeces-
sor CN-states”; such thatZ is reachable from each df;
by executingA. In FOVIA, actions are specified by precon-
ditions that are represented @dl-statesand STRIPS style
effectsQt andQ .

We now illustrate the regression procedure with an ex-
ample from the blocksworld scenario. Here, we present one
regression step through actiptatdown (T op, Bottom) that
has two nature’s choices, given below:

putdown, (Top, Bottom)
Pre: (holding(Top),{on(X, Bottom)})
Eff : QF = on(Top, Bottom)
Q™ = holding(Top)
putdowns(Top, Bottom)
Pre: (holding(Top), {on(X, Bottom)})
Eff : QT = on(Top, table)
Q~ = holding(Top) .

The regression of thEN-stateZ:
Z = (on(By, By) o on(By,table) o on(Bs, table), )
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yields the following predecessor statés

Z1 = (holding(Bz) o on(By, B1) o on(By, table), ()

Zy = (holding(Bz) o on(By, B1) o on(By, table)o
on(Bs, table), {on(By, B3)})

Z3 = (holding(By) o on(Bi, table) o on(Ba, table),
{on(Bs, B1)}) ,

where Z, represents all real-world states, where a gripper
holds a blockBs, a blockB, is onB; andB; is on the table;

Z, asserts the same informationzsand additionally states
that some blockBs; is on the table and there is no such block
By that is onBs; and Zs is interpreted as the set of all real-
world states, where a gripper holds a blaBk, blocks B,

and B, are on the table, and there is no such blétkthat
isonBj.

The regression procedure can be outlined as follows. We
first check whether th&)~ effects and theP-part of a
CN-stateZ are consistent wrt. each other. If the answer is
no, then the regression procedure stops delivering the empty
set of predecess@N-states Otherwise, a predecessor state
is constructed as follows: Th@* effects are subtracted
from the P-part of theCN-stateZ and the result is joined
with the P-part of the action preconditions forming ti&
part of a predecess@N-state Analogously, the\-part of
a predecessd@N-statds built by subtracting th€)— effects
from the V-part of Z and joining the result with th&/-part
of the action preconditions. If the resulting predecessor state
is consistent then it is added to the set of #ig predecessor
states. We describe the consistency check in more detail in
the section on optimizations.

The operations over fluent terms and sets of fluent terms,
e.g., aforementioned subtraction and union, are based on
solving the submultiset matching problem that usually has
multiple solutions (GroRet al. 1992). This implies that
the regression procedure may deliver multiple predecessor
states. Recalling our running example, b@N-states?;
and Z3; were obtained as a result of the regressionZof
through a single nature’s choig@tdown;.

Some Optimizations

In general, a state description may contain two kinds of in-
consistencies. The inconsistency of the first kind takes place
when some element of th& -part contradicts with the”-

part. For example, in a state descript{ead(a), {red(X)})

the P-part asserts that the bloeks red, whereas th&-part
prohibits any blockX of being red. In this case, the consis-
tency test will include a simple syntactic check.

The second kind of inconsistencies is referred to as
domain-dependent. For example, the state description
(emptyoholding(a), () is formally consistent (wrt. the pre-
vious kind of inconsistency). And only after having learned
that the domain contains a single gripper, tBN-stateis
turned to be inconsistent. In this case, the consistency test
uses additional domain axioms which, e.g., state that the
combination of fluentsmpty andholding(X) is forbidden.

The state space that represents a value function after some
iteration step of FOVIA algorithm may contain redundan-
cies. For example, consider a state space that consists
of two abstract stateg; = (holding(a),0) and Z, =
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(holding(X),0) that are both assigned the same value, say,
of 10. TheCN-stateZ; represents the set of all real-world
states that do satisfy the faleblding(a). At the same time,

the CN-stateZ, describes all real-world states represented
by Z, plus additional states, whet¥ is instantiated by a
constant different fronuz. Since the values associated with
Z, and Z, are the same/Z; can be painlessly removed
without loss of information. In FCEANNER, we employ

the automated normalization procedure that, given a state
space, delivers an equivalent one that contains no redundan-
cies (Skvortsova 2003). The technique employs the notion
of a subsumption relation that enables to determine which
states are redundant and can be removed from the state space

therefore.
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Abstract

We describe Probapop, a partial-order probabilistic
planning system. Probapop is a blind (conformant)
planner that finds plans for domains involving prob-
abilistic actions but no observability. The Probapop
implementation is based on Vhpop, a partial-order de-
terministic planner written in C++. The Probapop
algorithm uses plan graph based heuristics for select-
ing a plan from the search queue, and probabilistic
assessment heuristics for selecting a condition whose
probability can be increased.

Introduction

Probapop! is a conformant probabilistic planner (term
used in (Hyafil & Bacchus 2003)). In this paradigm,
the actions and the initial state can be probabilistic,
i.e., they can have several possible outcomes anno-
tated by a probability of occurrence. In addition,
the planning problem is conformant i.e., the agent
cannot observe the environment. The objective is
to find a minimal sequence of steps that will take
an agent from an initial set of states to a speci-
fied goal state within a specified threshold probabil-
ity. Note that while the assumption of blind agents
is not true in general, it is useful to incorporate con-
formant planning methods because sensing might be
expensive, not reliable, or not available. We leave con-
tingency planning, e.g., (Majercik & Littman 1999;
Onder & Pollack 1999; Hansen & Feng 2000; Karls-
son 2001) and other paradigms that assume non-
probabilistic effects, e.g.,(Ferraris & Giunchiglia 2000;
Bertoli, Cimatti, & Roveri 2001) outside the current
implementation of Probapop.

Our work is motivated by the incentive to have
partial-order planning as a viable option for confor-
mant probabilistic planning. The primary reason is
that partial-order planners have worked very well with
lifted actions which are useful in coding large domains

!This work has been supported by a Research Excellence
Fund grant from Michigan Technological University.
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in a compact way. Second, due to its least commit-
ment strategy in step ordering, partial-order planning
(POP) produces plans that are highly parallelizable.
Third, planners that can handle rich temporal con-
straints have been based on POP algorithms (Smith,
Frank, & Jonsson 2000).

Our basic approach is to form base plans by using de-
terministic partial-order planning techniques, and then
to estimate the best way to improve these plans. Re-
cently Repop (Nguyen & Kambhampati 2001) and Vh-
pop (Younes & Simmons 2002) planners have demon-
strated that the very heuristics that speed up non-
partial-order planners can be used to scale up partial-
order planning. We show that these distance based
heuristics (McDermott 1999; Bonet & Geffner 1999) as
implemented using “relaxed” plan graphs can be em-
ployed in probabilistic domains. These, coupled with
selective plan improvement heuristics result in signif-
icant improvement. As a result, Probapop enjoys the
soundness, completeness, and least-commitment prop-
erties of partial-order planning and makes partial-order
planning feasible in probabilistic domains.

Probapop and Partial-Order Planning

For partial-order probabilistic planning, we imple-
mented the Buridan (Kushmerick, Hanks, & Weld
1995) probabilistic planning algorithm on top of Vhpop
(Younes & Simmons 2002), a recent partial-order plan-
ner. A partially ordered plan 7 is a is 6-tuple, <STEPS,
ORD, BIND, LINKS, OPEN, UNSAFE>, representing sets
of ground actions, ordering constraints, binding con-
straints, causal links, open conditions, and unsafe
links, respectively. An ordering constraint S; < S;
represents the fact that step S; precedes S;. A causal
link is a triple < S;,p,S; >, where S; is the pro-
ducer, S; is the consumer and p represents the condi-
tion supported. An open condition is a pair < p, S >,
where, p is a condition needed by step S. A causal link
< 5;,p,S; > is unsafe if the plan contains a threaten-
ing step S such that Sy has p among its effects, and
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S may intervene between S; and S;. Open conditions
and unsafe links are collectively referred to as flaws. A
planning problem is a triple (I, G,t), where, the initial
state I is a probability distribution over states, G is a
set of literals that must be true at the end of execution,
and t is a probability threshold. The planner must find
a plan that takes the agent from I to G with a prob-
ability > t. If several plans have the same probability
of success, then the one with the least number of steps
is preferred.

The Probapop algorithm shown in Fig. 1 first con-
structs an initial plan by forming I and G into ini-
tial and goal steps, and then refines the plans in the
search queue until it finds a solution plan that meets
or exceeds the probability threshold. Plan refinement
operations involve repairing flaws. An open condition
can be closed by adding a new step from the domain
theory, or reusing a step already in the plan. An un-
safe link is handled by the promotion, demotion, or
separation (lifted actions are used) operations, or by
confrontation(Penberthy & Weld 1992) which involves
commitment to non-threatening effects.

function PROBAPOP (initial, goal, t)
returns a solution plan, or failure
plans — MAKE-MINIMAL-PLAN(initial, goal)
loop do
if plans is empty then return failure
plan — REMOVE-FRONT(plans)
if SOLUTION? (plan, t) then return plan
plans — MERGE(plans, REFINE-PLAN(plan))
end

function REFINE-PLAN (plan)
returns a set of plans (possibly null)
if FLaws(plan) is empty then
plan — REOPEN-CONDITIONS(plan)
flaw — SELECT-FLAW(plan)
if flaw is an open condition then choose:
return REUSE-STEP(plan, flaw)
return ADD-NEW-STEP(plan, flaw)
if flaw is a threat then choose:
return DEMOTION(plan, flaw)
return PROMOTION(plan, flaw)
return SEPARATION(plan, flaw)
return CONFRONTATION(plan, flaw)

Figure 1: The probabilistic POP algorithm.

The search is conducted using an A* algorithm
guided by a ranking function f. As usual for a plan
7, f(m) = g(n) + h(r), where g(m) is the cost of the
plan, and h(7) is the estimated cost of completing it.
In Probapop, g reflects the number of steps in a plan, h
represents the estimated number of steps to complete
a plan. Both are weighted by the probability of success
of the overall plan. The ranking function is used at the
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MERGE step to order the plans in the search queue such
that the plan that ranks best is at the beginning of the
queue. We term a plan for which OPEN = UNSAFE = ()
as a quasi-complete plan. A quasi-complete plan is not
a solution if it does not meet the probability thresh-
old. Probapop can be viewed as first choosing a plan
to improve using the ranking function, then choosing
a way to improve the plan, and finally choosing a way
to implement the improvement. These phases do not
have to follow strictly or work on the same plan. Af-
ter the successors of a plan are generated, the ranking
function might gear the search toward other plans in
the search queue. In the next section, we describe the
heuristics used.

Distance Based Ranking and Selective
Reopening in Probapop

The Vhpop deterministic partial order-planner de-
scribed in (Younes & Simmons 2002) implements the
ADD heuristic to provide an estimate of the total num-
ber of new actions needed to close all the open condi-
tions. Before starting to search, the planner builds a
planning graph (Blum & Furst 1997) which has the
literals in the initial state in its first level, and con-
tinues to expand it until it reaches a level where all
the goal literals are present. Vhpop’s ADD heuris-
tic achieves good performance by computing the step
cost of the open conditions from the planning graph,
i.e.,, h(m) = haaa(OPEN(x)). The cost of achieving
a literal ¢ is the level of the first action that achieves
A hadd(q) = Mingeca(ghaad(a) if GA(q) # 0, where
GA(q) is an action that has an effect ¢g. Note that
hadd(q) is 0 if g holds initially, and is co if ¢ never holds.
The level of an action is the first level its preconditions
become true: hggqq(a) =1+ heaa(PREC(a)).

3 prec: P, Q prec: P, Q
(a1 ) (a2 )
I

3

3 prec: P, ~Q

I

|

|

Figure 2: Probabilistic action Al is split into deter-
ministic actions Al-1, A1-2, and A1-3.

In order to be able to use ADD with probabilistic ef-
fects, one would need to split into as many plan graphs
as there are leaves in a probabilistic action. To avoid
this, we split each action in the domain theory into as
many deterministic actions as the number of nonempty
effect lists each representing a possible way the original
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action would work (Fig. 2). By using the split actions,
we can compute a good estimate of the number of ac-
tions needed to complete a plan. While the plan graph
uses split actions, the plans in the search queue always
contain the full original action so that the planner can
correctly assess the probability of success. Our current
ranking function uses this assessment to prefer plans
with higher probability of success, and if there is a tie,
the plan with less number of steps is preferred.

An important distinction between deterministic
partial-order planning and probabilistic partial-order
planning is multiple support for plan literals. In the
deterministic case, an open condition is permanently
removed from the list of flaws once it is resolved. In
the probabilistic case, it can be reopened so that the
planner can search for additional steps that increase
the probability of the literal. We address this problem
by employing selective reopening (SR) where we select
a random total ordering of the plan; look at the state
distribution after the execution of each step; and re-
open only those conditions that are not guaranteed to
be achieved. While plan assessment is costly for prob-
abilistic plans, this is a one time cost incurred only on
quasi-complete plans and we have observed that the
benefit of avoiding extra plans in the search space far
exceeds the computational overhead incurred.

It is important to note that neither the split actions
nor the selective reopening technique change the base
soundness and completeness properties of the Buridan
algorithm. The split actions are only used in the re-
laxed plan graph, and the reopening technique does
not block any alternatives from being sought as they
would already be covered by a plan in the search queue.

Conclusion and Future Work

We presented Probapop, a partial-order probabilistic
planner. We described distance-based and probabilis-
tic condition based heuristics for partial-order prob-
abilistic planning. We informally noted that neither
the split actions nor the selective reopening technique
change the base soundness and completeness proper-
ties of the Buridan algorithm.

Probapop is different than policy generating plan-
ners such as Spudd(Hoey et al. 1999) and Gpt(Bonet
& Geffner 2000) in the sense that it generates plans.
Given a planning problem, Probapop returns a se-
quence of steps that achieve the goal with a probability
that meets or exceeds the specified threshold. The plan
generated does not rely on sensing actions in order to
be executed. Our future work involves adding the ca-
pability to deal with partially observable domains to
Probapop.
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Abstract

We present a stochastic planner based on Markov De-
cision Processes (MDPs) that participates to the prob-
ablistic planning track of the 2004 International Plan-
ning Competition. The planner transforms the PDDL
problems into factored MDPs that are then solved with
a structured policy iteration algorithm. A probabilistic
reachability analysis is performed, approximating the
MDP solution over the reachable states subspace, in or-
der to restrict the search space and allow a subsequent
heuristic search.

Introduction

We present a planner based on Markov Decision Processes
(MDPs) (Puterman 1994) to participate in the probabilistic
planning track of the International Planning Competition at
ICAPS’04. MDPs provide a decision-theoretic framework
for planning with uncertain actions effects. A MDP (Put-
erman 1994) is a Markov chain controlled by an agent. A
control strategy associates to each state the choice of an ac-
tion, whose result is a stochastic state. The Markov property
means that the probability of arriving in a particular state af-
ter an action only depends on the previous state of the chain
and not on the entire states history. Formally it is a tuple
(S, A, T, R) where S is the set of states, A is the set of ac-
tions, 7" and R are functions giving respectively the transi-
tion probabilities between states (depending on the chosen
action) and the immediate or terminal rewards (depending
on the starting state, the chosen action and the ending state).
The most frequent optimisation criterion consists in maxi-
mizing the infinite horizon sum E (3"~ f 1) of expected
rewards r; discounted by a factor 0 < 3 < 1 that insures the
convergence of algorithms, but can also be interpreted as a
uncontrolled stopping probability between two time points.

The resolution of MDPs is based on dynamic program-
ming and includes two classes of algorithms : value iter-
ation and policy iteration. The first is an iteration on the
value function associated with each state, that is to say the
expected accumulated reward starting from this state. When
the iterated value function stabilizes, the optimal value func-
tion is reached and the optimal policy follows. In the policy

Copyright (© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.
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iteration scheme, the current policy is assessed on the in-
finite horizon and improved locally at each iteration. The
value of a policy = is solution of Bellman’s equations (Bell-
man 1957) :

Vi(s) = Y T(s,m(s),s) - (R(s,7(s),s") + BV7(s))

s'esS

Compared to value iteration, the policy iteration algorithm
converges in fewer iterations, but each policy assessment
stage may be computationally costly. A large discussion
about criteria and resolution algorithms is proposed in (Put-
erman 1994).

Motivations and issues

Nevertheless, classical exact algorithms (based on stochas-
tic dynamic programming on an explicitly enumerated state
space) are not effective enough for realistic applications that
often have very large state spaces (Boutilier & Hanks 1999;
Verfaillie, Garcia, & Péret 2003). Proposed techniques
to solve such problems include approximating or learn-
ing methods (Bertsekas & Tsitsiklis 1995) where the com-
puting cost and the error are both controlled. Other ap-
proaches exploit the natural structure of planning problems
either by using compact factored representations (Boutilier
& Hanks 1999; Boutilier, Dearden, & Goldszmidt 2000;
Hoey et al. 2000), or by decomposing the state space in
sub-regions (Hauskrecht et al. 1998; Dean & Lin 1995;
Parr 1998) that enables a hierarchical resolution that is
sometimes more effective.

Our initial motivations are to combine factored and
enumerated state representations in probabilistic planning
(Teichteil-Knigsbuch & Fabiani 2004). The obtained hybrid
MDP model exploits the problem structure in terms of both
decomposition and factorization. This approach is adapted
for stochastic planning problems involving both intermedi-
ate tasks planning and navigation planning. Tools are needed
in order to restrict the search space to its useful part and al-
low an efficient heuristic search in useful regions.

State space factorization

Our planner uses a compact factored representation of
MDPs based on Algebraic Decision Diagrams (ADDs) (R.I.
Bahar ef al. 1993) and is inspired from (Hoey et al. 2000).
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Since the problems of the stochastic planning track of the
competition are given in the PPDDL 1.0 language (Younes
& Littman 2003), we must translate the PPDDL problem
definitions into ADDs-based MDP representation.

The factorization of the state space consist in a cross prod-
uct involving state variables : S = ®}_;x;. It is a compact
representation because the states are no longer enumerated
in a list, but rather structured by the set of random state vari-
ables: z;7_,. Such variables enable to process sets of states,
instead of individual states, whenever useful. For each ac-
tion, the transition probability into a given state is no longer
given as a function of the individual initial state but now de-
pends conditionnally on the state variables. Therefore, they
can be represented either as Dynamic Bayesian Networks
(Dean & Kanazawa 1989) or with probabilistic STRIPS op-
erators (Dearden & Boutilier 1997).

Dynamic Bayesian Networks (DBNs)

A factored MDP can be represented by use of a set of ac-
tion networks. For each action, an action network (which is
a DBN) represents the probabilistic effects and rewards ob-
tained on the variables after the action has been performed
(post-action variables), conditionally to the possible val-
ues of the variables before the action is applied (pre-action
variables). There can exist diachronic arcs, directed from
pre-action variables to post-action variables, and synchronic
arcs encoding for dependences (correlations) between post-
action variables. Such DBNs represent the factored con-
ditional (controlled) transition probabilities within the state
space, encoded as conditional probabilities of obtaining the
post-action variables knowing the pre-action variables. The
corresponding immediate rewards are directly associated to
the possible transitions. These data are stored respectively in
a Conditional Probability Table and in a Conditional Reward
Table. Such data structures can be represented either as a set
of decision trees (Boutilier, Dearden, & Goldszmidt 2000)
or as a set of Algebraic Decision Diagrams (ADDs) (Hoey
et al. 2000). Although ADDs only deal with binary vari-
ables (boolean values), they are in most cases much more
effective than decision trees. Non-binary variables are then
encoded using a number of boolean variables (Hoey et al.
2000).

Resolution scheme

The resolution scheme corresponding to factored MDPs,
named Decision-Theoretic Regression, avoid the explicit
enumeration of all states at each iteration. The correspond-
ing algorithms are structured versions of the classical MDPs
resolution algorithms, which use algebraic operations de-
fined on decision trees, or ADDs, in order to solve Bell-
man’s equations for these data structures. For instance, us-
ing ADDs, the conditional probabilities ADDs of the possi-
ble actions (Probability ADDs) and conditional reward val-
ues ADDs of the possible actions (Reward ADDs) are com-
bined in order to provide both Value Function ADDs and
Policy ADDs on the factored state space. The algorithms
directly perform the operations on ADDs (the same on de-
cision trees naturally). The SPI algorithm (Boutilier, Dear-
den, & Goldszmidt 2000) is a value iteration scheme based
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on decision trees. The SPUDD and APRICODD algorithms
(Hoey et al. 2000), based on ADDs, are respectively value
iteration and approximated value interation algorithms for
factored MDPs. As SPUDD, we use the CUDD package
(Somenzi 1998) as an ADD library in our planner.

Policy iteration with ADDs

However, our planner rather implements a structured ver-
sion of the modified policy iteration. As a matter of fact,
we did not find any implementation of the policy iteration
scheme based on the CUDD package. To our experience,
the CUDD package does not provide directly a number of
operations that appear as useful for policy iteration. For in-
stance, policy evaluation requires an operation on the cur-
rent Policy ADD II, which replaces each leaf labelled by the
number of an action a (Policy ADDs have leaves labelled by
action numbers) with the Reward ADD R, of this action a,
and replaces the other leaves by 0. Let us call ConcatAc-
tionRewardADDPolicy(11,a) such an operation that outputs
an ADD R having the same leaves values as R, when ap-
plicable according to II, O otherwise. Ry =qca RE is the
immediate reward ADD applying II over the state space.

R,+—0
For o from 1 to |A| do

R «— ConcatAction RewardAD D Policy(I1, a)
Ry «— Ry + R

Similarly, we need a ConcatActionProbADDPolicy(11,a) to
compute the probability ADDs P! that applies the Probabil-
ity ADD P, of action a whenever applicable according to II,
and 0 otherwise. Py =4ca Pf is the transition Probability
ADD over the state space S applying II. The implemented
version of these operations could possibly be improved by
writing new low-level procedures for the CUDD package.

Correlations

The resolution of factored MDPs can sometimes be specif-
ically improved, depending on the specific features of the
problem. For instance, dealing with correlations between
post-action variables in action networks (synchronic arcs)
may be an issue. In (Boutilier, Dearden, & Goldszmidt
2000), it is proposed to replace such parasitic post-action
variables in decision trees (or ADDs) by modified subtrees
containing only pre-action variables. However, this complex
operation can be avoided. This is done in our planner by
using a single complete action diagram per action network
(Hoey et al. 2000) that represents the product of the con-
ditional probabilities of obtaining the post-action variables
knowing the pre-action variables; as a matter of fact, the
correlations in that case are implicit and they do not require
a specific treatment.

Probabilistic Reachability Analysis and Heuristic
Search

Coping with large state spaces is a really challenging is-
sue when dealing with realistic problems. This problem has
been addressed from at least two different points of view in
the literature :
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e Reachability analysis : when the initial state is known,
a reachability analysis allows to dismiss state variables
combinations (sets of states) corresponding to states that
will never be reached or traversed. For example, the algo-
rithm REACHABLEK proposed in (Boutilier, Brafman, &
Geib 1998) enables to push away from trees (or ADDs in
the same way) the nodes corresponding to states that are
not reachable when starting from a given starting state.

e heuristic search : an heuristic search algorithm can be
used in order to speed up the optimization algorithms, ei-
ther by producing good initialization values for iterative
optimization, or by leading the optimization algorithm to
run on more useful regions of the state space. For ex-
ample, the algorithm proposed in (Feng & Hansen 2001)
does both and guarantees to converge towards the opti-
mal solution by using an admissible heuristic. It performs
value iteration on a restriction E of the state space. It uses
a lower bound estimation as a heuristic initial value as-
signed on the “fringe” states on the border of F for value
iteration on the states of E. This heuristic also determines
the “explansion” of £ via a reachability analysis using the
current “partial” policy II given by policy iteration at this
stage.

The meeting point of both points of view is reached when
the heuristic search is based on a reachability analysis. In
our planner we perform a probabilistic reachability analysis
on the problem. We use it in the policy iteration scheme in
order to provide an initial partial policy. We also use it to
restrict the resolution algorithm on a useful subspace of the
state space. These aspects of the resolution schemeare still
under development and require further work.

Conclusion

We have presented our probabilistic planner which is
based on Factored Markov Decision Processes (MDPs) as
a decision-theoretic framework for planning under uncer-
tainty. The work described in this short paper is still un-
complete at this time, but will be completed for the prob-
abilistic planning track of the International Planning Com-
petition at ICAPS’04. We expect the competition to lead
to improvements of our algorithms, to be used later in a
more general framework combining factored and enumer-
ated state representations. Such an hybrid MDP model al-
lows to take advantage of the problem structure in terms of
both (geographical) decomposition and factorization. It is
more dedicated to stochastic planning problems involving
both intermediate tasks planning and navigation planning,
such as exploration missions. This research is part of the
autonomous helicopter project ReSSAC project at ONERA
(http://www.cert.fr/dcsd/RESSAC).
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Abstract

We present a planning system for selecting policies in prob-
abilistic planning domains. Our system is based on a vari-
ant of approximate policy iteration that combines inductive
machine learning and simulation to perform policy improve-
ment. Given a planning domain, the system iteratively im-
proves the best policy found so far until no more improvement
is observed or a time limit is exceeded. Though this process
can be computationally intensive, the result is a reactive pol-
icy, which can then be used to quickly solve future problem
instances from the planning domain. In this way, the resulting
policy can be viewed as a domain-specific reactive planner for
the planning domain, though it is discovered with a domain-
independent technique. Thus, the initial cost of finding the
policy is amortized over future problem-solving experience
in the domain. Due to the system’s inductive nature, there are
no performance guarantees for the selected policies. How-
ever, empirically our system has shown state-of-the-art per-
formance in a number of benchmark planning domains, both
deterministic and stochastic.

I ntroduction

We view a planning domain (e.g. as specified via PPDDL)
as a Markov Decision Process (MDP) where there is an
MDP state for each possible problem instance in the do-
main. Viewed as such, a solution to the MDP, i.e. a policy,
is a mapping from problem instances to domain actions. For
goal-based domains, such a policy can be viewed as speci-
fying what action to take given the current domain state and
current goal. A good policy will select actions so as to min-
imize the expected cost of reaching the goal.

Typically the MDP corresponding to a PPDDL domain
has far too many states to support solution via flat state-
space MDP techniques. To deal with large state spaces
we base our system on a form of approximate policy itera-
tion (API), which does not rely on state-space enumeration.
Most existing frameworks for API (e.g. (Bertsekas & Tsit-
siklis 1996)) represent policies indirectly via value functions
and use machine learning to select value function approxi-
mations. However, in many domains, particularly those with
relational (first-order) structure, representing and learning

Copyright (© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.
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value functions is much more complicated than represent-
ing and learning policies directly. Based on this observation,
our system utilizes a new variant of API (Fern, Yoon, & Gi-
van 2003), which represents policies directly as state/action
mappings.

The performance of our system depends on two critical
issues. First, we must provide a policy language and asso-
ciated learner that allow the system to find approximations
of good policies. Second, for complex domains, it is neces-
sary to provide a mechanism to bootstrap the API process.
Below we describe the choices we have made to deal with
these issues in our current system.

In what follows we first provide an overview of API. Next
we discuss the policy representation language and learning
technique used in our system. Finally, we give an overview
of our bootstrapping technique. A more detailed treatment
of our algorithms can be found in (Fern, Yoon, & Givan
2003; 2004).

Approximate Policy Iteration

Figure 1 shows the core components of our system’s APl en-
gine. Each iteration of API consists of two primary stages:
policy evaluation and policy selection. Intuitively, policy
evaluation uses simulation to produce a training set that de-
scribes an improved policy with respect to the current pol-
icy. Policy selection then uses machine learning to find an
approximation of the improved policy based on the training
set. Thus, if we are given a current policy and then apply
these steps in sequence, the result is an (approximately) im-
proved policy. Our system iterates these steps until no more
improvement is observed.

Policy Evaluation. Policy evaluation is carried out via
the simulation technique of policy rollout (Bertsekas & Tsit-
siklis 1996). The policy-rollout component first draws a set
of problem instances (which can also be viewed as MDP
states) from the provided problem generator.* Next, for each
problem instance I and each action a available in I, simula-
tion is used to estimate the Q-value Q(I, a, w) of the current

Even when a problem generator is not provided for a planning
domain, we can still use API to solve individual problem instances.
Given an individual problem instance to be solved, we simply cre-
ate a trivial problem generator that always returns that problem in-
stance.
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Figure 1: Block diagram of approximation policy iteration. We assume each planning domain provides a problem generator and our goal
is to produce a policy that performs well on problem instances drawn from the generator. Given the current best policy, the policy-rollout
component creates a training set that describes an improved policy as evaluated on problems drawn from the generator. The classifier learner
than analyzes this training set and outputs an approximately improved policy.

policy 7, which is simply the expected value of taking ac-
tion a in I and then following 7 until a terminating state is
reached or a horizon limit is exceeded.

It is straightforward to compute a new improved pol-
icy ' from the Q-values of policy =. In particular, it
is a basic property of MDPs that «’ defined as #(I) =
argmax,Q (I, a, ) is guaranteed to improve upon =, if im-
provement is possible. Thus, for each of our sample prob-
lem instances, the estimates of Q(I,a,w) can be used to
calculate #'(7), that is an “improved action” for problem
instance I. Intuitively, the pairs (I, 7'(I)) can be viewed
as training examples for learning an approximation of =’
To support such learning, the output of the policy-rollout
component is a training set, with one training instance
(I,Q(I,a1,7),...,Q(I,an,w)) for each instance I drawn
from the problem generator. Please refer to (Fern, Yoon, &
Givan 2003) for more details.

Policy Selection. Policy selection is carried out by the
classifier-learning component of our system. Note that a pol-
icy can be viewed as a classifier that maps problem instances
(i.e. states) to actions. The training set obtained from policy
rollout is used to learn an (approximately) improved policy.
Given a language for compactly representing policies, the
job of the classifier learner is to select a policy within that
language that chooses actions with high Q-value for prob-
lem instances in the training set. With a proper language
bias, such policies also tend to select good actions in prob-
lem instances outside of the training set. In the next section
we give an overview of the policy description language and
the corresponding learner used in our system.

Compute Time. In our current system, the compuatation
time of API is mostly consumed by generating training sets
via policy rollout. This is particularly the case for domains
where problem instances contain many ground actions, as
multiple trajectories must be simulated for each ground ac-
tion in each problem instance encountered. Presently the
rollout component is implemented in Scheme, hence one
way to significantly improve runtime is to provide a C imple-
mentation. We are also working to exploit the independence
of the rollout trajectories with a parallel implementation. If
completed, this speedup may be in effect for our competition
entry.
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Representing and L earning Policies

For API to succeed, we must provide an adequate language
for representing good policies in a domain, and an associated
learner that can find good policies, in that language, based
on the guidance provided by the rollout training sets.

One of our primary interests is in applying our system to
relationally structured planning domains, such as the blocks
world, where problem instances are described by specify-
ing a domain of objects (e.g. a set of blocks) and relations
among the objects. Thus, it is critical that we provide a pol-
icy language that leverages the relational structure in order
to generalize across problem instances with different sets of
objects. For example, our language needs to represent poli-
cies that can be applied to any problem instance of the blocks
worlds, regardless of the number and identity of blocks. In
order to represent such “generalized policies” we draw upon
ideas from the knowledge-representation community, using
a language based on taxonomic syntax.

Policy Representation. Our policy representation is an
ordered list of rules. The head of each rule is a variablized
action type such as pickup(?a). The body of each rule spec-
ifies a conjunction of constraints on the “object variables”
in the head, which indicate when an action should be ap-
plied. Given a problem instance, we say that a rule suggests
an action if: 1) the action is the result of replacing the object
variables in the head with objects from the problem instance,
and 2) those objects satisfy the appropriate constraints in the
body. The action selected by an ordered list of rules (i.e. a
policy) is equal to the action chosen by the earliest rule that
selects an action.

The object constraints in a rule’s body are represented via
taxonomic syntax expressions, which are constructed from
the predicate symbols of the planning domain and object
variables in the rule’s head. As an example policy, consider
a blocks-world domain where the goal is always to clear off
block A. We can represent an optimal policy in our taxo-
nomic representation as follows.

pickup(?a)
putdown(?a)

(?a € on* A) A (?a € clear)
?a € holding

The first rule indicates that we should “pick up a clear block
which is above block A”. The second rule says that we
should “put down any block that is being held”.

For a detailed description of the syntax and semantics of
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our policy language please refer to the appendix of (Fern,
Yoon, & Givan 2004).

L earning. Recall that each training instance is of the form
(I,Q(I,a1,7),...,Q(I,an, 7)), where I is a problem in-
stance and the Q(I, a;, 7) are the associated Q-values. The
goal of the learner is to select a list of rules such that the
actions chosen by the corresponding policy results in high
Q-value over the training data. ldeally the learned policy
should always select an action corresponding to the largest
Q-value.

We use a simple greedy covering strategy for learning lists
of taxonomic rules. We add one rule to the list at a time
until the resulting policy covers all of the training data (i.e.
the policy selects an action for every problem instance in the
training data). Each rule is learned by greedily adding object
constraints to the body according to a heuristic measure that
attempts to balance the coverage and quality of a rule. For
more information on the learner, please refer to (Yoon, Fern,
& Givan 2002) and (Fern, Yoon, & Givan 2003).

Bootstrapping from Random Walks

API must be initialized with a base policy from which it-
erative policy improvement begins. Since our objective is
to have a domain-independent system, we use the random
policy as the default base policy in our system. However,
for many planning domains it is unlikely that a random pol-
icy will achieve any non-trivial reward in problem instances
drawn from the provided problem generator. For example,
in a blocks world with even a relatively small nhumber of
blocks, it is unlikely that a random policy will achieve the
goal configuration. As a result, in such domains, API will
tend to fail when initialized with a random base policy. The
primary reason for the failure is that the Q-values for each
action under the random policy will tend to be equal. Thus,
the rollout training set, which is based on the Q-values, will
not provide the learner with useful guidance as to what ac-
tions are desirable.

Our current approach to this problem is to utilize a
new bootstrapping technique (Fern, Yoon, & Givan 2004).
Rather than initially drive APl with the original problem
generator (which generates difficult problems), we instead
automatically construct an new problem generator that gen-
erates easier problems. We then increase the problem diffi-
culty in accordance with the quality of the current best policy
found by API. Below we describe this process for goal-based
domains. Our current system does not provide a bootstrap-
ping mechanism for non-goal-based domains.

We generate problem instances of varying difficulty by
performing random walks in the planning domain. To con-
struct a single problem instance from a planning domain, we
first draw a problem instance from the original problem gen-
erator. In a goal-based setting, such a problem instances will
specify an (initial) domain state s and a goal. Next, starting
at s, we take a sequence of n random actions (i.e. an n-step
random walk) and observe the resulting state g. We con-
struct a new problem instance with initial state s and goal g.
When n is small, such problem instances are relatively easy
to solve and we can learn a policy to solve all such problem
instances using API starting with a random base policy.
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Once we learn a policy for “random-walk problems” with
small n, we increase the value of n until the current pol-
icy performs poorly and then continue to apply API using
the more difficult problem distribution. This process of iter-
atively increasing n and then applying API continues until
we either achieve a policy that performs well on the orig-
inal problem distribution or no more improvement is ob-
served. For more details and empirical results please see
(Fern, Yoon, & Givan 2004).
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