
14th International Conference on
Automated Planning and Scheduling
Whistler, British Columbia, Canada - June 3-7, 2004

International Planning Competition
Chairs Classical Track
Stefan Edelkamp, University of Dortmund (Germany)
Jörg Hoffmann, Albert-Ludwigs-University (Germany)

Chairs Probabilistic Track
Michael Littman, Rutgers University (USA)
Håkan Younes, Carnegie Mellon University (USA)

Background Image © Rick Flebbe

14th International Conference on Automated Planning and Scheduling
June 3-7, 2004 in Whistler, British Columbia, Canada
Conference Chairs: Shlomo Zilberstein, Jana Koehler, Sven Koenig

International Planning Competition

Chairs Classical Track
Stefan Edelkamp, University of Dortmund (Germany)
Jörg Hoffmann, Albert-Ludwigs-University (Germany)

Chairs Probabilistic Track
Michael Littman, Rutgers University (USA)
Håkan Younes, Carnegie Mellon University (USA)

The material in these notes is copyrighted by its respective authors.
It does not count as published.
For more information on ICAPS, please visit www.icaps-conference.org.

Preface

From a research perspective, running a competition pushes the envolope in
the development and implementation of new or improved algorithms and data
structures. The fourth international planning competition, IPC-4 for short, has
attracted many competitors, and we as the organisers hope that the event will
be a significant step in promoting the acceptance and applicability of planning
technology.

The competition and its organisation is splited into two parts. On the one
hand, there is the classical part that, in continuation of the previous competition
events, considers “classical” fully deterministic and observable planning. On the
other hand, there is – for the first time in the history of the event – a probabilistic
part, featuring factored encodings of fully observable Markov decision problems.
In both parts, variations of PDDL as the common language lay the basis for the
competition.

The 4th IPC has several exciting aspects. On the one hand, the classical
track features more realistic benchmark domains, formulated (in part) with
the help of two new language extensions. There is an extra track for optimal
planners (planners that give a guarantee on the quality of the returned solution),
and with round about 20 competing systems the event is even a little larger
than its already large predecessors. The existence of the probabilistic part is,
of course, exciting in itself. It is a great success in that it also attracted several
competing systems, since the probabilistic competition is completely new!

Talking about competing systems, the organisers wish to say a big “thank
you” to all the participating teams for their efforts. There is significant bravery
in the submission of a planning system to a competition, where the choice and
design of the benchmark problems is up to the competition organisers, not to
the individuals!

It is the first time that a booklet like this is distributed at the host con-
ference. The organisers hope that, with this booklet, the transparency and
understandability of the competition event, at the time of its happening (or
at least shortly after), will greatly improve, given that over 60 authors have
contributed to it. The actual results of the competition are, of course, not yet
collected at the time of writing. The results will be made available at ICAPS’04
in the form of posters that will be put up in the coffee break room.

The booklet is divided into two parts, one about the classical part of IPC-4,
one about the probabilistic part. Both parts contain extended abstracts written
by participating teams, describing their planner or their planners – each team
was allowed to enter (at most) two competing systems. Note that the abstracts
were written while the competition was still running, so the abstracts might
not describe the full functionalities of the final system versions. Each part of
the booklet also includes a brief presentation of the PDDL variant used. For
the classical part we have added an extra abstract giving short description of
our benchmark domains, to give people an idea of what kinds of problems the

i

planners were tested on, and how we created these problems.
We hope that, by reading this booklet, everybody receives an impression of

the the fun, importance and charme of this year’s competition event. We wish
all of you an exciting conference!

Stefan Edelkamp and Jörg Hoffmann (co-chairs classical track)
Michael Littman and H̊akan L. S. Younes (co-chairs probabilistic track)

ii

iii

Table of Contents

Classical Part

PDDL2.2: The Language for the Classical Part of IPC-4
Stefan Edelkamp and Jörg Hoffmann . 2

Towards Realistic Benchmarks for Planning: the Domains used in the Classical
Part of IPC-4
Jörg Hoffmann, Stefan Edelkamp, Roman Englert, Frederico Liporace, Sylvie
Thiébaux, and Sebastian Trüg . 7

Macro-FF
Adi Botea, Markus Enzenberger, Martin Müller, and Jonathan Schaeffer . . 15

Optiplan: Unifying IP-based and Graph-based Planning
Menkes van den Briel and Subbarao Kambhampati . 18

FAP: Forward Anticipating Planner
Guy Camilleri and Joseph Zalaket .21

Marvin: Macro Actions from Reduced Versions of the Instance
Andrew Coles and Amanda Smith . 24

A Petri net based representation for planning problems
Marcos Casilho and André Guedes, Tiago Lima, João Marynowski, Razer Mon-
taño, Luis Künzle, and Fabiano Silva .27

SGPlan: Subgoal Partitioning and Resolution in Planning
Yixin Chen, Chih-Wei Hsu, and Benjamin W. Wah . 30

Planning in PDDL2.2 Domains with LPG-TD
Alfonso Gerevini, Alessandro Saetti, Ivan Serina, and Paolo Toninelli 33

The Working of CRIKEY – a Temporal Metric Planner
Keith Halsey . 35

TP4’04 and HSP*a

Patrik Haslum . 38

Fast Downward – Making use of causal dependencies in the problem represen-
tation
Malte Helmert and Silvia Richter .41

iv

SATPLAN04: Planning as Satisfiability
Henry Kautz . 44

Tilsapa - Timed Initial Literals Using SAPA
Bharat Ranjan Kavuluri and Senthil U . 46

The Optop Planner
Drew McDermott . 48

Combining Backward-Chaining With Forward-Chaining AI Search
Eric Parker . 51

P-MEP: Parallel More Expressive Planner
Javier Sanchez, Minh Tang and Amol D. Mali . 53

The YAHSP planning system: Forward heuristic search with lookahead plans
analysis
Vincent Vidal . 56

CPT: An Optimal Temporal POCL Planner based on Constraint Programming
Vincent Vidal and Héctor Geffner . 59

BFHSP: A Breadth-First Heuristic Search Planner
Rong Zhou and Eric A. Hansen . 61

Heuristic Planning via Roadmap Deduction
Lin Zhu and Robert Givan . 64

v

Probabilistic Part

Introduction to the Probabilistic Track
Michael Littman and H̊akan L. S. Younes . 68

PPDDL1.0: The Language for the Probabilistic Part of IPC-4
H̊akan L. S. Younes and Michael Littman . 70

mGPT: A Probabilistic Planner based on Heuristic Search
Blai Bonet and Héctor Geffner . 74

Symbolic Heuristic Search for Probabilistic Planning
Zhengzhu Feng and Eric A. Hansen . 77

NMRDPP: Decision-Theoretic Planning with Control Knowledge
Charles Gretton, David Price, and Sylvie Thiébaux . 80

FCPlanner: A Planning Strategy for First-Order MDPs
Eldar Karabaev, and Olga Skvortsova .83

Probapop: Probabilistic Partial-Order Planning
Nilufer Onder, Garrett C. Whelan, and Li Li .86

Probabilistic Reachability Analysis for Structured Markov Decision Processes
Florent Teichteil-Königsbuch and Patrick Fabiani . 89

Learning Reactive Policies for Probabilistic Planning Domains
SungWook Yoon, Alan Fern, and Robert Givan . 92

vi

Classical Part

edelkamp

PDDL2.2: The Language for the Classical Part of IPC-4
— extended abstract —

Stefan Edelkamp
Fachbereich Informatik
Baroper Str. 301, GB IV

44221 Dortmund, Germany
stefan.edelkamp@cs.uni-dortmund.de

Jörg Hoffmann
Institut für Informatik

Georges-K̈ohler-Allee, Geb. 52
79110 Freiburg, Germany

hoffmann@informatik.uni-freiburg.de

Introduction
The 3rd International Planning Competition, IPC-3, was run
by Derek Long and Maria Fox. The competition focussed
on planning in temporal and metric domains. For that pur-
pose, Fox and Long developed the PDDL2.1 language (Fox
& Long 2003), of which the first threelevelswere used in
IPC-3. Level 1 was the usual STRIPS and ADL planning,
level 2 added numeric variables, level 3 added durational
constructs.

In this document, we describe the language, named
PDDL2.2, used for formulating the domains used in the clas-
sical part of IPC-4. As the language extensions made for
IPC-3 still provide major challenges to the planning commu-
nity, the language extensions for IPC-4 are relatively mod-
erate. The first three levels of PDDL2.1 are interpreted as
an agreed fundament, and kept as the basis of PDDL2.2.
PDDL2.2 also inherits the separation into the three levels.
The language features added on top of PDDL2.1 arederived
predicates(into levels 1,2, and 3) andtimed initial literals
(into level 3 only). Both of these constructs are practically
motivated, and are put to use in some of the competition
domains. Details on the constructs are in the respective sec-
tions.

The next section discusses derived predicates, including a
brief description of their syntax, and the definition of their
semantics. The section after that does the same for timed
initial literals. Full details, including a BNF description of
PDDL2.2, can be found in a technical report (Edelkamp &
Hoffmann 2004).

Derived Predicates
Derived predicates have been implemented in several plan-
ning systems in the past, including e.g. UCPOP (Penberthy
& Weld 1992). They are predicates that are not affected by
any of the actions available to the planner. Instead, the pred-
icate’s truth values are derived by a set of rules of the form
if φ(x) then P (x). The semantics are, roughly, that an in-
stance of a derived predicate (a derived predicate whose ar-
guments are instantiated with constants; afact, for short) is
TRUE iff it can be derived using the available rules (more
details below). Under the name “axioms”, derived predi-
cates were a part of the original PDDL language defined by
McDermott (McDermott & others 1998) for the first plan-
ning competition, but they have never been put to use in a

competition benchmark (we use the name “derived predi-
cates” instead of “axioms” in order to avoid confusion with
safety conditions).

Syntax
The BNF definition of derived predicates involves just two
small modifications to the BNF definition of PDDL2.1:

<structure-def> ::= :derived−predicates

<derived-def>

The domain file specifies a list of “structures”. In
PDDL2.1 these were either actions or durational actions.
Now we also allow “derived” definitions at these points.

<derived-def> ::= (:derived <atomic
formula(term)> <GD>)

The “derived” definitions are the “rules” mentioned
above. They simply specify the predicateP to be de-
rived (with variable vectorx), and the formulaφ(x) from
which instances ofP can be concluded to be true. Syntacti-
cally, the predicate and variables are given by the<atomic
formula(term)> expression, and the formula is given
by <GD>(a “goal descrption”, i.e. a formula).

The BNF is more generous than what we actually allow
in PDDL2.2, respectively in IPC-4. We make a number of
restrictions to ensure that the definitions make sense and are
easy to treat algorithmically. We call a predicateP derived
if there is a rule that has a predicateP in its head; otherwise
we callP basic. The restrictions we make are the following.

1. The actions available to the planner do not affect the de-
rived predicates: no derived predicate occurs on any of
the effect lists of the domain actions.

2. If a rule defines thatP (x) can be derived fromφ(x), then
the variables inx are pairwise different (and, as the no-
tation suggests, the free variables ofφ(x) are exactly the
variables inx).

3. If a rule defines thatP (x) can be derived fromφ, then the
Negation Normal Form (NNF) ofφ(x) does not contain
any derived predicates in negated form.

The first restriction ensures that there is a separation be-
tween the predicates that the planner can affect (the basic
predicates) and those (the derived predicates) whose truth

edelkamp
 2

edelkamp

values follow from the basic predicates. The second restric-
tion ensures that the rule right hand sides match the rule left
hand sides. Let us explain the third restriction. The NNF of a
formula is obtained by “pushing the negations downwards”,
i.e. transforming¬∀x : φ into ∃x : (¬φ), ¬∃x : φ into
∀x : (¬φ), ¬

∨
φi into

∧
(¬φi), and¬

∧
φi into

∨
(¬φi).

Iterating these transformation steps, one ends up with a for-
mula where negations occur only in front of atomic formulas
– predicates with variable vectors, in our case. The formula
contains a predicateP in negated formiff there is an oc-
curence ofP that is negated. By requiring that the formulas
in the rules (that derive predicate values) do not contain any
derived predicates in negated form, we ensure that there can
not be any negative interactions between applications of the
rules (see the semantics below).

An example of a derived predicate is the “above” pred-
icate in theBlocksworld, which is true between blocksx
andy wheneverx is transitively (possibly with some blocks
in between) ony. Using the derived predicates syntax, this
predicate can be defined as follows.

(:derived (above ?x ?y)
(or (on ?x ?y)

(exists (?z) (and (on ?x ?z)
(above ?z ?y)))))

Note that formulating the truth value of “above” in terms
of the effects of the normalBlocksworld actions is very awk-
ward (the unconvinced reader is invited to try). The predi-
cate is the transitive closure of the “on” relation.

Semantics
We now describe the updates that need to be made to the
PDDL2.1 semantics definitions given by Fox and Long in
(Fox & Long 2003). We introduce formal notations to cap-
ture the semantics of derived predicates. We then “hook”
these semantics into the PDDL2.1 language by modifying
two of the definitions in (Fox & Long 2003).

Say we are given the truth values of all (instances of the)
basic predicates, and want to compute the truth values of the
(instances of the) derived predicates from that. We are in this
situation every time we have applied an action, or parallel
action set. (In the durational context, we are in this situation
at the “happenings” in our current plan, that is every time a
durative action starts or finishes.) Formally, what we want to
have is a functionD that maps a set of basic facts (instances
of basic predicates) to the same set but enriched with derived
facts (the derivable instances of the derived predicates). As-
sume we are given the setR of rules for the derived predi-
cates, where the elements ofR have the form(P (x), φ(x))
– if φ(x) then P (x). ThenD(s), for a set of basic factss, is
defined as follows.

D(s) :=
⋂
{s′ | s ⊆ s′,∀(P (x), φ(x)) ∈ R : ∀c, |c| = |x| :

(s′ |= φ(c) ⇒ P (c) ∈ s′)}
This definition uses the standard notations of the modelling
relation|= between states (represented as sets of facts in our
case) and formulas, and of the substitutionφ(c) of the free
variables in formulaφ(x) with a constant vectorc. In words,
D(s) is the intersection of all supersets ofs that are closed
under application of the rulesR.

Remember that we restrict the rules to not contain any
derived predicates in negated form. This implies that the
order in which the rules are applied to a state does not matter
(we can not “lose” any derived facts by deriving other facts
first). This, in turn, implies thatD(s) is itself closed under
application of the rulesR. In other words,D(s) is the least
fixed point over the possible applications of the rulesR to
the state where all derived facts are assumed to be FALSE
(represented by their not being contained ins).

More constructively,D(s) can be computed by the fol-
lowing simple process.

s′ := s
do

selecta rule(P (x), φ(x)) and a vectorc of constants,
|c| = |x|, such thats′ |= φ(c)

let s′ := s′ ∪ {P (c)}
until no rule and constant vector could be selected
letD(s) := s′

In words, apply the applicable rules in an arbitrary order
until no new facts can be derived anymore.

We can now specify what an executable plan is in
PDDL2.1 with derived predicates. All we need to do is to
hook the functionD into Definition 13, “Happening Execu-
tion”, in (Fox & Long 2003). By this definition, Fox and
Long define the state transitions in a plan. The happenings
in a (temporal or non-temporal) plan are all time points at
which at least one action effect occurs. Fox and Long’s def-
inition is this:

Definition 13 Happening Execution (Fox and Long
(2003))
Given a state,(t, s,x) and a happening,H, theactivity for
H is the set of grounded actions

AH = {a| the name fora is in H, a is valid and
Prea is satisfied in(t, s,x)}

Theresult of executing a happening, H, associated with time
tH , in a state(t, s,x) is undefined if|AH | 6= |H| or if any
pair of actions inAH is mutex. Otherwise, it is the state
(tH , s′,x′) where

s′ = (s \
⋃

a∈AH

Dela) ∪
⋃

a∈AH

Adda (∗ ∗ ∗)

andx′ is the result of applying the composition of the func-
tions{NPFa | a ∈ AH} to x.

Note that the happenings consist of grounded actions, i.e.
all operator parameters are instantiated with constants. To
introduce the semantics of derived predicates, we now mod-
ify the result of executing the happening. (We will also adapt
the definition of mutex actions, see below.) The result of ex-
ecuting the happening is now obtained by applying the ac-
tions tos, then subtracting all derived facts from this, then
applying the functionD. That is, in the above definition we
replace(∗ ∗ ∗) with the following:

s′ = D(((s \
⋃

a∈AH

Dela) ∪
⋃

a∈AH

Adda) \D)

edelkamp
3

edelkamp

edelkamp

edelkamp

whereD denotes the set of all derived facts. If there are no
derived predicates,D is the empty set andD is the identity
function.

As an example, say we have aBlocksworld instance
where A is on B is on C,s = {clear(A), on(A,B),
on(B,C), ontable(C), above(A,B), above(B,C),
above(A,C)}, and our happening applies an action that
moves A to the table. Then the happening execution
result will be computed by removingon(A,B) from s,
adding clear(B) and ontable(A) into s, removing all
of above(A,B), above(B,C), and above(A,C) from s,
and applyingD to this, which will re-introduce (only)
above(B,C). Sos′ will be s′ = {clear(A), ontable(A),
clear(B), on(B,C), ontable(C), above(B,C) }.

By the definition of happening execution, Fox and Long
(Fox & Long 2003) define the state transitions in a plan. The
definitions of what an executable plan is, and when a plan
achieves the goal, are then standard. The plan isexecutable
if the result of all happenings in the plan is defined. This
means that all action preconditions have to be fulfilled in
the state of execution, and that no two pairs of actions in a
happening aremutex. The planachieves the goalif the goal
holds true in the state that results after the execution of all
actions in the plan.

With our above extension of the definition of happening
executions, the definitions of plan executability and goal
achievement need not be changed. We do, however, need
to adapt the definition of when a pair of actions is mutex.
This is important if the happenings can contain more than
one action, i.e. if we consider parallel (e.g. Graphplan-style)
or concurrent (durational) planning. Fox and Long (Fox &
Long 2003) give a conservative definition that forbids the
actions to interact in any possible way. The definition is the
following.

Definition 12 Mutex Actions (Fox and Long (2003))
Two grounded actions,a andb arenon-interferingif
GPrea ∩ (Addb ∪Delb) = GPreb ∩ (Adda ∪Dela) = ∅ (∗)

Adda ∩Delb = Addb ∩Dela = ∅
La ∩Rb = Ra ∩ Lb = ∅

La ∩ Lb ⊆ L∗a ∪ L∗b

If two actions are not non-interfering they aremutex.

Note that the definition talks about grounded actions
where all operator parameters are instantiated with con-
stants. La, Lb, Ra, and Rb refer to the left and right
hand side ofa’s and b’s numeric effects.Adda/Addb and
Dela/Delb area’s andb’s positive (add) respectively neg-
ative (delete) effects.GPrea/Gpreb denotes all (ground)
facts that occur ina’s/b’s precondition. If a precondition
contains quantifiers then these are grounded out (∀x trans-
forms to

∧
ci, ∃x transforms to

∨
ci where theci are all ob-

jects in the given instance), andGPre is defined over the re-
sulting quantifier-free (and thus variable-free) formula. Note
that this definition of mutex actions is very conservative – if,
e.g., factF occurs only positively ina’s precondition, then
it does not matter ifF is among the add effects ofb. The
conservative definition has the advantage that it makes it al-
gorithmically very easy to figure out if or if nota andb are
mutex.

In the presence of derived predicates, the above defini-
tion needs to be extended to exclude possible interactions
that can arise indirectly due to derived facts, in the precon-
dition of the one action, whose truth value depends on the
truth value of (basic) facts affected by the effects of the
other action. In the same spirit in that Fox and Long for-
bid any possibility of direct interaction, we now forbid any
possibility of indirect interaction. Assume we ground out
all rules(P (x), φ(x)) for the derived predicates, i.e. we in-
sert all possible vectorsc of constants; we also ground out
the quantifiers in the formulasφ(c), ending up with vari-
able free rules. We define a directed graph where the nodes
are (ground) facts, and an edge from factF to fact F ′ is
inserted iff there is a grounded rule(P (c), φ(c)) such that
F ′ = P (c), andF occurs inφ(c). Now say we have an ac-
tion a, where all ground facts occuring ina’s precondition
are, see above, denoted byGPrea. By DPrea we denote
all ground facts that can possibly influence the truth values
of the derived facts inGPrea:

DPrea := {F | there is a path fromF to anF ′ ∈ GPrea}
The definition of mutex actions is now updated simply by
replacing, in the above definition,(∗ ∗ ∗) with:

(DPrea ∪GPrea) ∩ (Addb ∪Delb) =
(DPreb ∪GPreb) ∩ (Adda ∪Dela) = ∅

As an example, reconsider theBlocksworld and the “above”
predicate. Assume that the action that moves a blockA to
the table requires as an additional, derived, precondition,
that A is above some third block. Then, in principle, two
actions that move two different blocksA andB to the ta-
ble can be executed in parallel. Which blockA (B) is on
can influence theabove relations in thatB (A) participates;
however, this does not matter because ifA andB can be
both moved then this implies that they are both clear, which
implies that they are on top of different stacks anyway. We
observe that the latter is a statement about the domain se-
mantics that either requires non-trivial reasoning, or access
to the world state in which the actions are executed. In order
to avoid the need to either do non-trivial reasoning about do-
main semantics, or resort to a forward search, our definition
is the conservative one given above. The definition makes
the actions movingA andB mutex on the grounds that they
can possibly influence each other’s derived preconditions.

The definition adaptions described above suffice to de-
fine the semantics of derived predicates for the whole of
PDDL2.2. Fox and Long reduce the temporal case to the
case of simple plans above, so by adapting the simple-plan
definitions we have automatically adapted the definitions of
the more complex cases. In the temporal setting, PDDL2.2
level 3, the derived predicates semantics are that their values
are computed anew at each happening in the plan where an
action effect occurs.

Timed Initial Literals
Timed initial literals are a syntactically very simple way of
expressing a certain restricted form of exogenous events:
facts that will become TRUE or FALSE at time points that
are known to the planner in advance, independently of the

edelkamp
4

actions that the planner chooses to execute. Timed initial lit-
erals are thus deterministic unconditional exogenous events.
Syntactically, we simply allow the initial state to specify –
beside the usual facts that are true at time point0 – literals
that will become true at time points greater than0.

Timed initial literals are practically very relevant: in the
real world, deterministic unconditional exogenous events
are very common, typically in the form of time windows
(within which a shop has opened, within which humans
work, within which traffic is slow, within which there is
daylight, within which a seminar room is occupied, within
which nobody answers their mail because they are all at con-
ferences, etc.).

Syntax
As said, the syntax simply allows literals with time points in
the initial state.

<init> :̄:= (:init <init-el> ∗)

<init-el> ::= :timed−initial−literals (at <number>
<literal(name)>)

The requirement flag for timed initial literals implies the
requirement flag for durational actions, i.e. as said the lan-
guage construct is only available in PDDL2.2 level 3. The
times<number> at which the timed literals occur are re-
stricted to be greater than0. If there are also derived pred-
icates in the domain, then the timed literals are restricted
to not influence any of these, i.e., like action effects they
are only allowed to affect the truth values of the basic (non-
derived) predicates (IPC-4 will not use both derived predi-
cates and timed initial literals within the same domain).

As an illustrative example, consider a planning task where
the goal is to be done with the shopping. There is a single
actiongo-shopping that achieves the goal, and requires the
(single) shop to be open as the precondition. The shop opens
at time 9 relative to the initial state, and closes at time 20.
We can express the shop opening times by two timed initial
literals:

(:init
(at 9 (shop-open))
(at 20 (not (shop-open)))

)

Semantics
We now describe the updates that need to be made to the
PDDL2.1 semantics definitions given by Fox and Long in
(Fox & Long 2003). Adapting two of the definitions suffices.

The first definition we need to adapt is the one that defines
what a “simple plan”, and its happening sequence, is. The
original definition by Fox and Long is this.

Definition 11 Simple Plan(Fox and Long (2003))
A simple plan, SP , for a planning instance,I, consists of
a finite collection oftimed simple actionswhich are pairs
(t, a), wheret is a rational-valued time anda is an action
name.

Thehappening sequence, {ti}i=0...k for SP is the ordered
sequence of times in the set of times appearing in the timed

simple actions inSP . All ti must be greater than0. It is
possible for the sequence to be empty (an empty plan).

Thehappeningat timet, Et, wheret is in the happening
sequence ofSP , is the set of (simple) action names that ap-
pear in timed simple actions associated with the timet in
SP .

In the STRIPS case, the time stamps are the natural num-
bers1, . . . , n when there aren actions/parallel action sets in
the plan. The happenings then are the actions/parallel action
sets at the respective time steps. Fox and Long reduce the
temporal planning case to the simple plan case defined here
by splitting each durational action up into at least two simple
actions – the start action, the end action, and possibly several
actions in between that guard the durational action’s invari-
ants at the points where other action effects occur. So in
the temporal case, the happening sequence is comprised of
all time points at which “something happens”, i.e. at which
some action effect occurs.

To introduce our intended semantics of timed initial liter-
als, all we need to do to this definition is to introduce ad-
ditional happenings into the temporal plan, namely the time
points at which some timed initial literal occurs. The timed
initial literals can be interpreted as simple actions that are
forced into the respective happenings (rather than selected
into them by the planner), whose precondition is true, and
whose only effect is the respective literal. The rest of Fox
and Long’s definitions then carry over directly (except goal
achievement, which involves a little care, see below). The
PDDL2.2 definition of simple plans is this here.

Definition 11 Simple Plan
A simple plan, SP , for a planning instance,I, consists of
a finite collection oftimed simple actionswhich are pairs
(t, a), wheret is a rational-valued time anda is an action
name. Bytend we denote the largest timet in SP , or 0 if
SP is empty.

LetTL be the (finite) set of all timed initial literals, given
as pairs (t, l) where t is the rational-valued time of oc-
curence of the literall. We identify each timed initial lit-
eral (t, l) in TL with a uniquely named simple action that
is associated with timet, whose precondition is TRUE, and
whose only effect isl.

Thehappening sequence, {ti}i=0...k for SP is the ordered
sequence of times in the set of times appearing in the timed
simple actions inSP andTL. All ti must be greater than0.
It is possible for the sequence to be empty (an empty plan).

Thehappeningat timet, Et, wheret is in the happening
sequence ofSP , is the set of (simple) action names that ap-
pear in timed simple actions associated with the timet in
SP or TL.

Thus the happenings in a temporal plan are all points in
time where either an action effect, or a timed literal, occurs.
The timed literals are simple actions forced into the plan.
With this construction, Fox and Long’s Definitions 12 (Mu-
tex Actions) and 13 (Happening Execution), as described
(and adapted to derived predicates) in Section , can be kept
unchanged. They state that no action effect is allowed to in-
terfere with a timed initial literal, and that the timed initial

edelkamp

edelkamp
5

literals are true in the state that results from the execution of
the happening they are contained in. Fox and Long’s Defini-
tion 14 (Executability of a plan) can also be kept unchanged
– the timed initial literals change the happenings in the plan,
but not the conditions under which a happening can be exe-
cuted.

The only definition we need to re-think is that of what
themakespanof a valid plan is. In Fox and Long’s original
definition, this is implicit in the definition of vaild plans. The
definition is this.

Definition 15 Validity of a Simple Plan (Fox and Long
(2003))
A simple plan (for a planning instance,I) is valid if it is
executable and produces a final stateS, such that the goal
specification forI is satisfied inS.

The makespan of the valid plan is accessible in PDDL2.1
and PDDL2.2 by the “total-time” variable that can be used in
the optimization expression. Naturally, Fox and Long take
the makespan to be the end of the plan, the time point of the
plan’s final state.

In the presence of timed initial literals, the question of
what the plan’s makespan is becomes a little more sub-
tle. With Fox and Long’s above original definition, the
makespan would be the end of all happenings in the simple
plan, whichincludeall timed initial literals (see the revised
Definition 11 above). So the plan would at least take as long
as it takes until no more timed literals occur. But a plan
might be finished long before that – imagine something that
needs to be done while there is daylight; certainly the plan
does not need to wait until sunset. We therefore define the
makespan to be the earliest point in time at which the goal
condition becomes (and remains) true. Formally this reads
as follows.

Definition 15 Validity and Makespan of a Simple Plan
A simple plan (for a planning instance,I) is valid if it is
executable and produces a final stateS, such that the goal
specification forI is satisfied inS. The plan’smakespanis
the smallestt ≥ tend such that, for all happenings at times
t′ ≥ t in the plan’s happening sequence, the goal specifica-
tion is satisfied after execution of the happening.

Remember thattend denotes the time of the last happen-
ing in the plan that contains an effect caused by the plan’s
actions – in simpler terms,tend is the end point of the
plan. What the definition says is that the plan is valid if,
at some time pointt after the plan’s end, the goal condi-
tion is achieved and remains true until after the last timed
literal has occured. The plan’s makespan is the first such
time point t. Note that the planner can “use” the events
to achieve the goal, by doing nothing until a timed literal
occurs that makes the goal condition true – but then the
waiting time until the nearest such timed literal is counted
into the plan’s makespan. (The latter is done to avoid situa-
tions where the planner could prefer to wait millions of years
rather than just applying a single action itself.) Remember
that the makespan of the plan, defined as above, is what can

be denoted bytotal-time in the optimization expression
defined with the problem instance.

Acknowledgements. We would like to thank the IPC-4
organizing committee for their help in taking the decision
about the language for the classical part of IPC-4, and in
ironing out the details about syntax and semantics. The peo-
ple contributing to this discussion were Drew McDermott,
Daniel Weld, David Smith, Hakan Younes, Jussi Rintanen,
Sylvie Thiebaux, Maria Fox, and Derek Long. We espe-
cially thank Maria Fox and Derek Long for giving us the
latex sources of their PDDL2.1 article, and for discussing
the modifications of this document needed to introduce the
semantics of derived predicates and timed initial literals.

References
Edelkamp, S., and Hoffmann, J. 2004. PDDL2.2: The
language for the classical part of the 4th international plan-
ning competition. Technical Report 195, Albert-Ludwigs-
Universiẗat, Institut f̈ur Informatik, Freiburg, Germany.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains.Journal
of Artificial Intelligence Research. Special issue on the 3rd
International Planning Competition, to appear.
McDermott, D., et al. 1998.The PDDL Planning Domain
Definition Language. The AIPS-98 Planning Competition
Comitee.
Penberthy, J. S., and Weld, D. S. 1992. UCPOP: A sound,
complete, partial order planner for ADL. In Nebel, B.;
Swartout, W.; and Rich, C., eds.,Principles of Knowledge
Representation and Reasoning: Proceedings of the 3rd In-
ternational Conference (KR-92), 103–114. Cambridge,
MA: Morgan Kaufmann.
Thiebaux, S.; Hoffmann, J.; and Nebel, B. 2003. In de-
fense of PDDL axioms. In Gottlob, G., ed.,Proceedings of
the 18th International Joint Conference on Artificial Intelli-
gence (IJCAI-03). Acapulco, Mexico: Morgan Kaufmann.
accepted for publication.

edelkamp

edelkamp
6

Towards Realistic Benchmarks for Planning:
the Domains Used in the Classical Part of IPC-4

– extended abstract –
Jörg Hoffmann∗ Stefan Edelkamp†

Roman Englert‡ Frederico Liporace§ Sylvie Thiébaux¶ Sebastian Tr̈ug‖

Introduction
Today, the research discipline of AI planning is largely con-
cerned with improving the performance of general problem
solving mechanisms. Performance is measured by testing
systems on example instances of the problem to be solved.
Clearly, since no mechanism will ever be able to perform
well on all instances of a (hard) problem, one of the most
crucial issues in such a research context is what kind of ex-
amples are used for the testing. Add on top of this that, more
and more, researchers draw their testing examples from the
collections used in the IPC, and it becomes evident that the
IPC benchmarks are nowadays one of the most important
instruments for the field.

In the organisation of the (classical part of the) 4th IPC,
we therefore invested considerable effort into creating a set
of “appropriate” benchmarks for planning. The criteria ap-
plied for appropriateness were that the benchmarks should
be:

1. Oriented at applications – a benchmark should reflect
an application that the field is heading for.

2. Diverse in structure – a set of benchmarks should cover
different kinds of structure that can occur in the attacked
problem.

3. Suitable for basic research– a set of benchmarks for a
field of basic research should not omit the basic aspects of
that research.

The first of these criteria is probably the one most widely
agreed upon – indeed, AI planning has frequently been criti-
cised for its “obsession with toy examples”. In recent years,
the performance of state-of-the-art systems has improved
dramatically, and with that more realistic examples came
within reach. We made another step in this direction by

∗Institut für Informatik, Universiẗat Freiburg, Germany
†Fachbereich Informatik, Universität Dortmund, Germany.

Supported by DFG
‡T-Mobile, Germany
§Departamento de Inforḿatica, PUC Rio, Brazil. Supported by

CNPq.
¶National ICT Australia & Computer Sciences Laboratory, The

Australian National University, Canberra, Australia
‖Institut für Informatik, Universiẗat Freiburg, Germany

orienting most of the IPC-4 benchmarks at application do-
mains. While traditionally planning benchmarks were more
or less phantasy products created having some “real” sce-
nario in mind, we took actual (possible) applications of plan-
ning technology, and turned them into something suitable
for the competition. In the process of adapting an applica-
tion for use in the (current form of the) IPC, inevitably some
of the realism has to give way to more pragmatic considera-
tions (expected planner performance, language capabilities,
etc.). Nevertheless, we believe that the IPC-4 domains are a
significant step into the right direction.

The second of the above listed appropriateness criteria has
traditionally been given less attention than the first one, but
we believe that it is not less important. The structure un-
derlying a testing example determines the performance of
the applied solving mechanism. This is particularly true for
solving mechanisms whose performance rises and falls with
the quality of a heuristic they use. Hoffmann (2002)’s results
suggest that much of the spectacular performance of modern
heuristic search planners is due to structural similarities be-
tween most of the traditional planning benchmarks. While
this does by no means imply that modern heuristic search
planners aren’t useful, it certainly shows that in the creation
of benchmarks there is a risk of introducing a bias towards
one specific way of solving them. In selecting the bench-
mark domains for IPC-4, we took care to cover a range of
intuitively very different kinds of problem structure.1

Finally, the third of our appropriateness criteria is prob-
ably agreed on by nobody – except all the people whose
planners can only handle STRIPS. More seriously, we be-
lieve that, with all the new PDDL extensions, the planning
community ought to not let completely go of its most basic
language. Most if not all of the algorithmic approaches that
have proved successful for solving temporal and numeric
planning problems have originally been developed for the
STRIPS language. If someone has a new idea for a plan-
ning algorithm or heuristic, he or she most certainly won’t
implement it for PDDL2.1 level 3 in the first go. There is
also the issue of accessibility of the competition, particu-
larly to newcomers. We made a serious effort to make even

1We even thought of separating the domains into a set of “appli-
cation” benchmarks and a set of “structurally characteristic” bench-
marks. We gave up on the idea to not overly complicate the com-
petition and its evaluation.

edelkamp

edelkamp
7

the STRIPS versions of the IPC-4 domains an interesting
range of benchmarks. Instead of dropping the more interest-
ing problem constraints, wecompiledas much of the domain
semantics as possible down into the STRIPS format. While
in most cases this lead to rather unusual (fully grounded) en-
codings, we believe that the IPC-4 STRIPS benchmarks are
structurally a lot more interesting than most of the previous
STRIPS benchmarks.

In the rest of this extended abstract, we include a short
description of each of the IPC-4 domains. We list the do-
mains in alphabetical order, and close the article with a few
concluding remarks.

Airport
The Airport domain was developed by Jörg Hoffmann and
Sebastian Tr̈ug. It is a PDDL adaption of an application
domain developed by Wolfgang Hatzack (Hatzack & Nebel
2001), dealing with the problem of controlling the ground
traffic on an airport (in such a way that the summed up travel
time of all airplanes is minimised).

The problem instances in Airport specify the topology of
the airport, as well as the inbound (planes that need to go to
a parking position) and outbound (planes that need to go to a
runway) traffic. The main problem constraint is that planes
must not endanger each other. Which means that no two
planes can share the same airport segment, and that a plane
with running engines “blocks” a set of segments behind it
(where the blocked set depends on the size category of the
plane). The available actions are to “pushback” (move a
plane away backwards from a parking position), to “startup”
the engines, to “move” between segments, to “park” (turning
off the engines), and to “takeoff” (which amounts to remov-
ing the plane from the airport).

The Airport domain versions arenon-temporal, tem-
poral, temporal-timewindows, and temporal-timewindows-
compiled. The first of these versions is, as the name sug-
gests, non-durational PDDL. In the second version, actions
take time (e.g. moving across a segment takes the length of
the segment divided by the speed of the plane). In the third
version, there are additional time windows during which cer-
tain segments must not be used – namely, segments that be-
long to a runway and time windows during which a plane
is known to land on that runway. The time windows are
modelled using timed initial literals. In the fourth domain
version, the timed initial literals are compiled into artificial
(temporal) PDDL constructs, in order to make the domain
version accessible to more planners.

In none of the domain versions were we able to model the
true optimisation criterion – minimising makespan means
minimising the travel time of the latest plane, rather than
the summed up travel time of all planes. The difficulty in
modelling the real optimisation criterion lies in accessing the
time spans during which a plane does nothing, i.e., stays on
an airport segment waiting until some other plane got out of
the way. If one uses an explicit “wait” action, then one needs
to introduce a discretisation of time (in order to say how long
the plane is supposed to wait). We considered introducing
a special “current-time” variable into PDDL2.2, returning
the time of its evaluation in the plan execution. But, in a

discussion with the IPC-4 organising committee, we decided
against this language feature as it seemed problematic from
an algorithmic point of view, and didn’t seem to be very
relevant anywhere except in Airport.

In all the domain versions, the problem constraints are
modelled using ADL, i.e., complex preconditions and condi-
tional effects. We compiled the ADL encodings to STRIPS
by grounding out most of the operator parameters (for each
individual problem instance, yielding an instance-specific
domain file). The resulting STRIPS encodings formed al-
ternativeformulationsof the domain versions, i.e. within
each domain version we let the competitors choose to either
attack the ADL formulation or the STRIPS formulation. The
data were then evaluated together, i.e. treated as if they were
all obtained on the same encoding. We applied this concept
of domainversionsand domainversion formulationsin all
the IPC-4 domains.2

The Airport example instances were generated by Sebas-
tian Trüg, using an airport simulation tool, calledAstras, by
Wolfgang Hatzack. Five scaling airport topologies were de-
signed, the simulator was run, and code was implemented
that, during a simulation, put out the traffic situations at se-
lected individual time spots as the PDDL problem instances.
50 traffic situations were generated, and put out in the for-
mat needed for each of the domain versions. The second
largest of the five airport topologies corresponds to one half
of Munich airport, MUC. The largest of the topologies cor-
responds directly to the full MUC airport.

Pipesworld
The Pipesworlddomain is a PDDL adaption of an appli-
cation domain developed by Frederico Liporace and others
(Milidiu, dos Santos Liporace, & de Lucena 2003), deal-
ing with complex problems that arise when transporting oil
derivative products through a pipeline system. Note that,
while there are many planning benchmarks dealing with
variants of transportation problems, transporting oil deriva-
tives through a pipeline system has a very different and char-
acteristic kind of structure. The pipelines must be filled with
liquid at all times, and if you push something into the pipe at
one end, something possibly completely different comes out
of it at the other end. Additional difficulties that have to be
dealt with are, e.g.,interface restrictions(different types of
products that must not interface each other in a pipe),tank-
age restrictionsin areas (i.e., limited storage capacity de-
fined for each product in the places that the pipe segments
connect), anddeadlineson the arrival time of products. In
the form used in IPC-4, the Pipesworld domain was devel-
oped by Frederico Liporace and Jörg Hoffmann. In all ver-
sions of the domain, the product amounts dealt with are dis-
crete in the sense that we assume a smallest product unit,
called “batch”. Of course, in reality the product amounts
dealt with are rational numbers. Using such a numeric en-

2We are aware that encoding details can have a significant im-
pact on system performance. On the other hand, we believe it is
important to keep the number of distinction lines in the competi-
tion data – which is already high – as low as possible. Most current
systems ground the operators out as a pre-process anyway.

edelkamp

edelkamp
8

edelkamp

coding in IPC-4 seemed completely infeasible due to com-
plications in the modelling, and the expected capabilities of
the participating planners.

The problem instances in Pipesworld specify the topol-
ogy of the pipeline network, the initial positions for all the
batches and the goal positions for some of the batches, and
the additional constraints imposed – interface restrictions,
tankage restrictions, and/or deadlines. A possible action is
to “push” a batch from an area into a pipe segment, making
the last batch in the pipe come out at the other end. Pipe
segments are modelled in a directional fashion, and we also
need the inverse “pop” action where a new batch is inserted
at the far end of the pipe, and the first batch in the pipe comes
out. In the actual PDDL encodings used, these actions are
split in several ways, to ease the modelling of their seman-
tics. The main difficulty is that the actions must keep track
of the internal state of the pipe segment involved. We intro-
duced special case actions for pipe segments of length 1 (i.e.,
1 batch). For pipe segments containing more than 1 batch,
we split the push (pop) action into a push-start (pop-start)
and a push-end (pop-end) action. While there is in principle
no problem with doing the necessary updates within a sin-
gle action, such an action contains rather many parameters.
In particular, 3 parameters ranging over batches are needed
– the batch to be pushed (poped), the first batch inside the
pipe segment, and the last batch inside the pipe segment.
Thus such an action has at leastn3 ground instances in the
presence ofn batches. We found that this made the domain
completely infeasible for any planner that grounded out the
actions. In the splited encoding, each action takes at most
two batch parameters.

The Pipesworld domain versions arenotankage-
nontemporal, tankage-nontemporal, notankage-temporal,
tankage-temporal, notankage-temporal-deadlines, and
notankage-temporal-deadlines-compiled. All versions in-
clude interface restrictions. The versions with “tankage” in
their name include tankage restrictions. In the versions with
“temporal” in their name, actions take (different amounts
of) time. The motivation for the durative actions, from an
operational point of view, is that each pipeline segment
has a maximum flow rate, and thus the content of some
segments may be moved faster than others. The versions
with “deadlines” in their name include deadlines on the
arrival of the goal batches. One of these versions models
the deadlines using timed initial literals, in the other version
(naturally, with “compiled” in its name) these literals are
compiled into artificial (temporal) PDDL constructs. None
of the encodings uses any ADL constructs, so of each
version there is just one (STRIPS) formulation.

The Pipesworld example instances were generated by
Frederico Liporace, in a process going from random gen-
erators to XML files to PDDL files.3 Five scaling network
topologies were designed. For the domain versions with-
out tankage restrictions and deadlines, for each of the net-
work topologies 10 scaling random instances were gener-

3The same XML file is mapped into different PDDL files de-
pending on the kind of encoding used; there was a lot of trial and
error before we came up with the final IPC-4 encoding.

ated. (Within a network, the instances scaled in terms of the
total number of batches and the number of batches with a
goal location.) For the instances featuring tankage restric-
tions or deadlines, the generation process was more compli-
cated because we wanted to make sure to obtain only solv-
able instances. For the tankage restriction examples, we ran
Mips on the respective “notankange” instances, with incre-
mentally growing tankage. We chose each instance at a ran-
dom point between the first instance solved by Mips, and the
maximum needed tankage (enough tankage in each area to
accommodate all instance batches). Some instances could
not be solved by Mips even when given several days of run-
time, and for these we inserted the maximum tankage. For
the deadline examples, we ran Mips on the corresponding
instances without deadlines, then arranged the deadline for
each goal batch at a random point in the interval between the
arrival time of the batch in Mips’s plan, and the end time of
Mips’s plan. The instances not solved by Mips were left out.

Promela

Promelais the input language of the ACM awarded model
checker SPIN (Holzmann 1997). It is designed to ease spec-
ification of asynchronous communication protocols, which
are to be validated by SPIN for having no specification error.
Otherwise the tool returns an error trail as a counterexample.
A Promela model consists of a set of processes, and commu-
nication between them is performed via message queues or
shared access to global variables. Each process can nonde-
terministically choose one of its transitions that fulfills the
condition an optional guard imposes. The IPC-4 Promela
domain was created by Stefan Edelkamp.

To allow STRIPS encodings for IPC-4, we selected two
simple communication protocols: a solution for theDining
Philosopherproblem, and theOptical Telegraphprotocol.
Both domains restrict to pure message passing, so that no
shared access to global variables is used. The models are
distributed together with our experimental model checking
tool HSF-SPIN (Edelkamp, Leue, & Lluch-Lafuente 2004),
that extends SPIN with heuristic search strategies to improve
error detection. In both cases we used one scaling parame-
ter, namely the number of philosophers and the number of
control stations, respectively.

In order to generate problem instances fully automati-
cally, we apply a compiler that transforms Promela speci-
fications into PDDL2.2. The compilation process and an ex-
position for one of the protocols are described in (Edelkamp
2003). The compiler features some but not all static lan-
guage constructs of Promela. Although not covered by the
IPC-4 benchmark set, the work also showed that including
communication via global variables and assignments of (not
necessarily linear) arithmetic expressions to variables can be
expressed in PDDL2.2. Besides deadlocks, violations to as-
sertions and global invariances can also be converted into
PDDL2.2 planning goals. For more complex error descrip-
tions, e.g. liveness errors, temporally extended goals are
needed. One of the core differences between Promela and
PDDL2.2 expressiveness are dynamic processes. An ac-
cording PDDL model would require a language extension

edelkamp

edelkamp

edelkamp
 9

for dynamic object creation. Fortunately, the core of most
Promela specifications in our own collection is static.

Both protocols are known to contain deadlocks. In the
PDDL2.2 descriptions, we utilised the finite state automata
representation for the processes and communication queues
that is inferred by SPIN. All active Promela processes are
typed, enumerated and assigned to a unique object id. Each
process consists of local states and transitions, with the
queue read and write operations specifically tagged. In the
PDDL model, a local state transition is firstactivatedbefore
according changes to the state variables or updates to the
queue are executed. Finally the state change isperformed.
To ease parsing, state transitions use a reduced ASCII set.

Queues model communication channels, in which mes-
sages (and optional data) is written and read by the pro-
cesses. The main idea in modelling queues is to represent
arrays of sizek in a ring structure: bucket0 is the successor
of bucketk−1 with a head and a tail pointer that are moving.
A queue is either empty or full if both pointers refer to the
same queue state. As a special case the queues can consist of
only one queue state, so the successor bucket of bucket 0 is
the bucket itself. In this case the grounded propositional en-
coding includes operators with add and delete lists that share
the same atom, so that we rely on the semantics of STRIPS,
saying that deletion is done first.

If the message for reading does not match or the queue
capacity is either too small or too large, the according local
state transitions will block. If all active transitions in a pro-
cess block, the process itself will block. If all processes are
blocked, we have a deadlock in the system. Detection of a
deadlock is crucial and is implemented either as a collection
of PDDL2.1 actions or, more elegantly, as a set of PDDL2.2
derived predicates, automatically inferring that all processes
for a state transition are blocked.

With each protocol we provide four different domain ver-
sions: plain, a purely propositional specification with spe-
cific actions that have to be applied to fix the deadlock;flu-
entsan alternative to the above with numerical state vari-
ables that encodes the size of the queues and the messages
used to access their contents;derivedpredicates, which con-
tains derived predicates to infer deadlocks; andfluents-
derivedpredicates, which is equivalent toderivedpredicates
and uses fluents instead of propositions for encoding queue
sizes and messages. We use one formulation that uses the
ADL constructsquantification, disjunctiveandnegated pre-
conditions; and one where the same semantics are compiled
into pure (propositional) STRIPS. Unfortunately, the larger
problem instances of these STRIPS formulations were too
big to be stored on disk. We keptfluent-domains as sep-
aratedversionsinstead of differentformulations to com-
pare pure propositional and numerical exploration efficien-
cies and to emphasise that numerical state variables are es-
sential for more complex model checking domains.

PSR
The Power Supply Restoration (PSR)domain is a PDDL
adaptation of an application domain investigated by
Thiébaux and others (Thiébaux et al. 1996; Thíebaux
& Cordier 2001), which deals with reconfiguring a faulty

power distribution system to resupply customers affected by
the faults. A power distribution system is viewed as a net-
work of electric lines connected by switches and fed via a
number of power sources. When a power source feeds a
faulty line, the circuit-breaker fitted to this source opens to
protect the rest of the network from overloads. This leaves
all the lines fed by the source without power. The prob-
lem consists in planning a sequence of switching operations
(opening or closing switches and circuit-breakers) bringing
the network into a configuration where non-faulty lines are
resupplied.

In the original PSR problem (Thiébaux & Cordier 2001),
various numerical parameters such as breakdown costs and
power margins need to be optimised, subject to power ca-
pacity constraints. Furthermore, the location of the faults
and the current network configuration are only partially ob-
servable, which leads to a tradeoff between acting to re-
supply lines and acting to reduce uncertainty. In con-
trast, the version used for IPC-4 is set up as a pure goal-
achievement problem (the goal specifies which lines must
be (re)-supplied), numerical aspects are ignored, and to-
tal observability is assumed. The choice of leaving out
the numerical aspects was motivated by the difficulty of
encoding and solving even the basic problem. The IPC-
4 PSR domain was developed by Sylvie Thiébaux and
Jörg Hoffmann. We benefited from contributions by Pier-
giorgio Bertoli, Blai Bonet, Alessandro Cimatti, and John
Slaney, some of which are reported in (Bertoliet al. 2002;
Bonet & Thíebaux 2003).

PSR problem instances specify (1) the network topology,
i.e., the objects in the network (the lines, the switches, the
sources/circuit-breakers), and their connections, (2) the ini-
tial configuration, i.e., the initial positions (open/closed) of
the switches and circuit-breakers, and (3) the modes (faulty
or not) of the various lines. Among those, only the devices’
positions can change. A number of other predicates are de-
rived from these basic ones. They model the propagation
of the current into the network with a view to determining
which lines are currently fed and which sources areaffected
by a fault, i.e. feed a fault. The closed-world assumption
semantics of PDDL2.2 derived predicates is exactly what is
needed to elegantly encode such relations. These require a
recursive traversal of the network paths which is naturally
represented as the transitive closure of the connection rela-
tion of the network.

The goal in a problem instance asks that given lines be
fed and all sources be unaffected.4 The available actions
are closing and opening a switch or a circuit-breaker. In ad-
dition, there is an actionwait, which models the event of
circuit-breakers opening when they become affected. Wait
is applicable when an affected source exists, and is the only
applicable action in that case. The goal and this together
ensures that the wait action is applied as soon as a source
is affected. The effect of the wait action is to open all the
affected circuit-breakers. It would have been possible to en-
code the opening of affected breakers as a conditional effect

4Note that after the circuit-breaker of an affected source opens,
this source is not affected any more, as it does not feed any line.

edelkamp
10

of the close action. However, this would have required more
complex derived predicates with an additional device as pa-
rameter and a conditional flavor, specifying, e.g., whether or
not a circuit-breakerwould beaffectedif we were to close
that device.

We use four domain versions of PSR in IPC-4. Primar-
ily, these versions differ by the size of the problem instances
encoded. The instance size determined in what languages
we were able to formulate the domain version. We tried
to generate instances of size appropriate to evaluate current
planners, i.e, we scaled the instances from “push-over for
everybody” to “impossibly hard for current automated plan-
ners”, were we got our intuitions by running a version of
FF enhanced to deal with derived predicates. The largest in-
stances are of the kind of size one typically encounters in
the real world. More on the instance generation process be-
low. The domain versions are named 1.large, 2. middle,
3. middle-compiled, and 4.small. Version 1 has the single
formulationadl-derivedpredicates. Version 2 has the formu-
lationsadl-derivedpredicates, simpleadl-derivedpredicates,
andstrips-derivedpredicates. Version 3 has the single for-
mulationadl, and version 4 has the single formulationstrips.
The formulation names simply give the language used. Ver-
sion 1 contains the largest instances, versions 2 and 3 con-
tain (the same) medium instances, and version 4 contains
the smallest instances. Theadl-derivedpredicatesformu-
lation is inspired from (Bonet & Thiébaux 2003), makes
use of derived predicates as explained above, and of ADL
constructs in the derived predicate, action, and goal def-
initions. In the simpleadl-derivedpredicatesand strips-
derivedpredicatesformulations, all ADL constructs (except
conditional effects in thesimpleadlcase) are compiled away
using automated software (basically, FF’s pre-processor).
The resulting encodings are fully grounded and significantly
larger than the original, while on the other hand the length of
plans remains completely unaffected. The pureadl formu-
lation is obtained from theadl-derivedpredicatesformula-
tion by compiling derived predicates away using the method
described in (Thíebaux, Hoffmann, & Nebel 2003). While
there is no increase in the domain size, this compilation
scheme can lead to an exponential increase in plan length
in the worst case. For the PSR instances we generated,
we observed only a polynomial blow up. Nevertheless we
felt that this increase in plan length was too much to make
for a useful direct comparison of data generated foradl-
derivedpredicatesas opposed toadl, and we separated the
adl formulation out into domain version 3 as listed above.

The strips domain formulation proved quite a challenge.
No matter how hard we tried, compiling both derived predi-
cates and ADL constucts away led to either completely un-
manageable domain descriptions or completely unmanage-
able plans. We therefore adopted a different fully-grounded
encoding inspired from (Bertoliet al. 2002), which is gen-
erated from a description of the problem instance by a tool
performing some of the reasoning devoted to the planner un-
der the other domain versions. As a result, the STRIPS en-
coding is much simpler and only refers to the positions of
the devices and not to the lines, faults, or connections. Also
we were still only able to formulate comparatively small in-

stances in STRIPS, without a prohibitive blow-up in the en-
coding size.

The PSR instances were randomly generated using John
Slaney’s randomnet program. Power distribution networks
often have a meshable structure exploited radially: the path
taken by the power of each source forms a tree whose
nodes are switches and whose arcs are electric lines; ter-
minal switches connect the various trees together. Random-
net takes as input the number of sources, a percentage of
faulty lines, and a range of parameters for controling tree
depth, branching, and tree adjacency, whose default values
are representative of real networks. Randomnet randomly
selects a network topology and a set of faulty lines. These
are turned into the various PDDL encodings above by a tool
called net2pddl,5 implemented by Piergiorgio Bertoli and
Sylvie Thíebaux. The instances we generated make use of
randomnet default settings, except for the maximal depth of
trees which takes a range of values up to twice the default,
leading to harder problems. The percentage of faulty lines
ranges from 0.1 to 0.7.

Satellite
The Satellite domain was introduced in IPC-3 by Derek
Long and Maria Fox (2003). It is motivated by a NASA
space application: a number of satellites has to take images
of a number of spatial phenomena, obeying constraints such
as data storage space and fuel usage. In IPC-3, there were
5 versions of the domain, corresponding to different levels
of the language PDDL2.1:Strips, Numeric, SimpleTime(ac-
tion durations are constants),Time(action durations are ex-
pressions in static variables), andComplex(durationsand
numerics, i.e. the “union” of Numeric and Time).

The adaption of the Satellite domain for IPC-4 was done
by J̈org Hoffmann. All IPC-3 domain versions and exam-
ple instances were re-used, except SimpleTime – like in the
other IPC-4 domains, we didn’t want to introduce an extra
version distinction just for the difference between constant
durations and static durations. On top of the IPC-3 versions,
4 new domain versions were added. The idea was to make
the domain more realistic by additionally introducing time
windows for the sending of the image data to earth, i.e. to
antennas that are visible for satellites only during certain pe-
riods of time – according to Derek Long, the lack of such
time windows was the main shortcoming of the IPC-3 do-
main.

We extended the IPC-3 Time domain version to two
IPC-4 domain versions,Time-timewindowsand Time-
timewindows-compiled. We extended the IPC-3 Complex
domain version to the two IPC-4 domain versionsComplex-
timewindowsand Complex-timewindows-compiled. In all
cases, we introduced a new action for the sending of data
to an antenna. An antenna can receive data of only a sin-
gle satellite at a time, an antenna is visible for only subsets
of the satellites for certain time periods, and the sending of

5Randomnet and net2pddl are available from the PSR
benchmark resource web pagehttp://csl.anu.edu.au/
˜thiebaux/benchmarks/pds , along with various other tools
and papers of interest.

edelkamp
 11

an image takes time proportional to the size of the image.
The time windows were modelled using timed initial literals,
and in the “-compiled” domain versions, these literals were
compiled into artificial PDDL constructs. None of the do-
main versions uses ADL constructs, so of all versions there
is only a single (STRIPS) formulation.

The instances were generated as follows. Our objectives
were to clearly demonstrate the effect of additional time
windows, and to produce solvable instances only. To accom-
plish the former, we re-used the IPC-3 instances, so that the
only difference between, e.g., Time and Time-timewindows,
lies in the additional time window constructs. To ensure
solvability, we implemented a tool that read the plans pro-
duced by one of the IPC-3 participants, and then arranged
the time windows so that the input plan was suitable to solve
the enriched instance. It is important to note here that the
time windows werenot arranged to exactly meet the times
extracted from the IPC-3 plan. Rather, we introduced one
time window per each 5 “take-image” actions, made the an-
tenna visible during that time window for only the respective
5 satellites, and let the image sizes be random values within
a certain range where the time window was 5 times as long
as the sending time resulting from the maximum possible
size.

Of course, the above generation process is arranged rather
arbitrarily, and the resulting instances might be a long way
away from the typical characteristics of the Satellite prob-
lem as it occurs in the real world. While this isn’t nice, it
is the best we could do without inside knowledge of the ap-
plication domain, and it has the advantage that the enriched
instances are solvable, and directly comparable to the IPC-3
ones.

In the new domain versions derived from Complex, we
also introduced utilities for the time window inside which
an image is sent to earth. For each image, the utility is either
the same for all windows, or it decreases monotonically with
the start time of the window, or it is random within a certain
interval. Each image was put randomly into one of these
classes, and the optimisation requirement is to minimise a
linear combination of makespan, fuel usage, and summed
up negated image utility.

Settlers

TheSettlersdomain was introduced in IPC-3 by Derek Long
and Maria Fox (2003). It makes extensive use of numeric
variables. These variables carry most of the domain seman-
tics, which is about building up an infrastructure in an unset-
tled area, involving the building of housing, railway tracks,
sawmills, etc. The domain was included into IPC-4 in order
to pose a challenge for the numeric planners – the other do-
mains mostly do not make much use of numeric variables,
other than computing the (static) durations of actions. We
used the exact same domain file and example instances as
in IPC-3, except that we removed some universally quanti-
fied preconditions to improve accessibility for planners. The
quantifiers ranged over domain constants only so they could
easily be replaced by conjunctions of atoms.

UMTS
The UMTSdomain has been developed by Roman Englert
(2003). It enables the execution of several (data) applica-
tions in mobile terminals. To start an application in a mobile
terminal the UMTS call set-up is required. This procedure
takes between a couple of seconds for an interactive game
like chess and 30 seconds for WAP access. Often users start
several applications and as a consequence the waiting pe-
riod until the call set-ups are executed takes several minutes.
Therefore, optimisation of the UMTS call set-up is needed,
where each application call is partitioned into modules (En-
glert 2005). The call set-up via software agents consists of
eight discrete modules:

• terminal resource management (trm): an application start
follows the resource availability check in the mobile ter-
minal and the resource allocation

• connection timing (ct): connection set-up duration is
monitored in the bearer and in case of failure feedback
to the terminal is given (within a certain time, e.g. 1 sec.)

• agent management (am) : requirements of mobile appli-
cations are transferred to bearer, e.g. Quality of service
(QoS), required data volume, . . .

• agent execution environment mobile (aeem): information
about mobile application are sent toam, e.g. required
servers, ...

• radio resource control (rrc): allocation of QoS by logical
resources

• radio access bearer: (rab) bearer allocation of QoS and
in case of failure initiation of resource negotiation with
mobile terminal

• agent execution environment internet (aeei): data transfer
for application set-up from mobile terminal to core net-
work and PDN, and vice versa

• bearer service (bs): bearer establishment and feedback to
mobile application,

To start the execution of a mobile application the mod-
ules are executed in sequential order. If several applications
are initiated, some modules can be executed in parallel. The
modules obey the following partial execution order:trm be-
fore ct, ct beforerrc and am, am beforeaeem, aeemand
rrc beforerab, rab beforeaeei, aeeibeforebs, with bs be-
ing final. A detailed documentation on UMTS can be found
in (Holma & Toskala 2000).

The PDDL2.2 translation of UMTS was established by
Stefan Edelkamp and Roman Englert. Actions were at-
tached to execution time, calling for Level 3 temporal plan-
ning. Instances are scaled to setup 1 up to 10 applications,
a range that is practically motivated. Compared to other
benchmarks, problem and domain description are compa-
rable small to rise a challenge especially for optimal tem-
poral planning approaches. However, real-time is required
for practical purposes. Action durations are given in mil-
liseconds and are selected due to practical constraints. The
entire benchmark set was completed by running a problem
generator that performs a realistic perturbation on the action
execution times.

edelkamp
 12

In the form used in IPC-4, the UMTS domain has six
versions. The first three are:temporal, a domain ver-
sion with no timing constraints,temporal-timewindows,
a domain version with PDDL2.2 timed initial facts, and
temporal-timewindows-compiled, a domain version with
a PDDL2.1 wrapper encoding for the timed initial liter-
als. The second domain version setflaw-temporal, flaw-
temporal-timewindows, and flaw-temporal-timewindows-
compiled, includes an additional but practical motivatedflaw
action that can affect plan finding, since it offers a shortcut
to a relaxed plan not needed for a valid one, and, in order to
determine that this action is not required, negative interac-
tions have to be computed.

All domain versions have one formulation, namelystrips-
fluents-temporal, where numerical fluents, but - except typ-
ing - no ADL constructs are used. In all instances, the
plan objective is to minimisemakespan. The temporaland
temporal-timewindowproblem specifications were tested
with the MIPS planner (Edelkamp 2004).

Besides action duration, the domain encodes scheduling
types of resources, consuming some amount at action ini-
tialisation time and releasing the same amount at action end-
ing time. Renewable global resources have not been used
in planning benchmarks before, and the good news are that
PDDL2.2 is capable of expressing them. In fact we used
a similar encoding to the one that we found forJob- and
Flow-Shopproblems. As one feature, actions are defined
to temporarily produce rather than to temporarily consume
resources. As PDDL2.2 has no way of stating such re-
source constraints explicitly, planners that want to exploit
that knowledge have to look for a certain patterns ofin-
crease/decreaseeffects to recognise them.

In UMTS, two actions can both check and update the
value of some resources (e.g.has-mobile-cpu) at their start-
ing (resp. ending) time points as far as the start (resp. end-
ing) events are separated byε time steps, whereε is min-
imum slack time required between two dependent events.
We first thought about modelling renewable resources with
anover allconstruct. But in this case, the invariant condition
of the action has to check, what theat startevent did change.
We decided that this is not the best choice for a proper du-
rative action. Consequently, the durative actions require that
there is enough of the resource availablebeforeadding the
amount used.

The domain assumes that the mobile applications run on
one mobile terminal. However, they can also be distributed
on to several mobile terminals. Additionally, the resource
modeling of the UMTS network is constrained to the most
important parameters (in total 15). In real networks several
hundred parameters are applied.

Concluding Remarks
In a field of research about general reasoning mechanisms,
such as AI planning, it is essential to have appropriate
benchmarks – benchmarks that reflect possible applications
of the developed technology, and that help drive research
into new and fruitful directions. In the development of the
benchmark domains and instances for IPC-4, the authors
have invested significant effort into creating such a set of

appropriate benchmarks for AI planning. The domains are
mostly still far away from “real-world” problems, and we
are aware that, e.g., fully grounded STRIPS encodings aren’t
nice and pose a serious problem for systems that don’t use
the standard pre-processes. Nevertheless we believe that the
IPC-4 domains constitute a significant step into the right di-
rection, and that they form an interesting range of bench-
marks. We hope they will become standard benchmarks in
the coming years.

Acknowledgements. We would like to thank the com-
petitors for their detailed comments about found bugs in our
domains, and we would like to thank Malte Helmert for var-
ious useful tools that helped remove some of these bugs.

References
Bertoli, P.; Cimatti, A.; Slaney, J.; and Thiébaux, S. 2002.
Solving power supply restoration problems with planning
via symbolic model-checking. InProc. 15th European
Conference on Artificial Intelligence (ECAI-02), 576–580.
Bonet, B., and Thíebaux, S. 2003. GPT meets PSR. In
13th International Conference on Automated Planning and
Scheduling (ICAPS-03), 102–111.
Edelkamp, S.; Leue, S.; and Lluch-Lafuente, A. 2004. Di-
rected explicit-state model checking in the validation of
communication protocols.International Journal on Soft-
ware Tools for Technology. To appear.
Edelkamp, S. 2003. Promela planning. InWorkshop on
Model Checking Software (SPIN), Lecture Notes in Com-
puter Science, 197–212. Springer.
Edelkamp, S. 2004. Extended critical paths in temporal
planning. InProceedings ICAPS-Workshop on Integrating
Planning Into Scheduling.
Englert, R. 2003. Re-scheduling with temporal and op-
erational resources for the mobile execution of dynamic
UMTS applications. InKI-Workshop AI in Planning,
Scheduling, Configuration and Design (PUK).
Englert, R. 2005. Planning to optimize the umts call set-
up for the execution of mobile agents.Journal of Applied
Artificial Intelligence (AAI). To appear.
Hatzack, W., and Nebel, B. 2001. The operational traf-
fic control problem: Computational complexity and so-
lutions. In Cesta, A., and Borrajo, D., eds.,Recent Ad-
vances in AI Planning. 6th European Conference on Plan-
ning (ECP’01), 49–60. Toledo, Spain: Springer-Verlag.
Hoffmann, J. 2002. Local search topology in plan-
ning benchmarks: A theoretical analysis. In Ghallab, M.;
Hertzberg, J.; and Traverso, P., eds.,Proceedings of the 6th
International Conference on Artificial Intelligence Plan-
ning and Scheduling (AIPS-02), 92–100. Toulouse, France:
Morgan Kaufmann.
Holma, H., and Toskala, A. 2000.WCDMA for UMTS -
Radio Access for 3rd Generation Mobile Communications.
Wiley & Sons.
Holzmann, G. J. 1997. The model checker Spin.IEEE
Trans. on Software Engineering23(5):279–295. Special
issue on Formal Methods in Software Practice.

edelkamp
 13

Long, D., and Fox, M. 2003. The 3rd international plan-
ning competition: Results and analysis.Journal of Artifi-
cial Intelligence Research. Special issue on the 3rd Inter-
national Planning Competition, to appear.
Milidiu, R. L.; dos Santos Liporace, F.; and de Lucena,
C. J. 2003. Pipesworld: Planning pipeline transportation of
petroleum derivatives. InProceedings ICAPS-03 Workshop
on the Competition.
Thiébaux, S., and Cordier, M.-O. 2001. Supply restoration
in power distribution systems — a benchmark for planning
under uncertainty. InProc. 6th European Conference on
Planning (ECP-01), 85–95.
Thiébaux, S.; Cordier, M.-O.; Jehl, O.; and Krivine, J.-
P. 1996. Supply restoration in power distribution systems
— a case study in integrating model-based diagnosis and
repair planning. InProc. 12th Conference on Uncertainty
in Artificial Intelligence (UAI-96), 525–532.
Thiébaux, S.; Hoffmann, J.; and Nebel, B. 2003. In defense
of pddl axioms. In18th International Joint Conference on
Artificial Intelligence (IJCAI-03), 961–966.

edelkamp

edelkamp

edelkamp
14

Macro-FF

Adi Botea, Markus Enzenberger, Martin Müller, and Jonathan Schaeffer
Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada T6G 2E8
{adib,emarkus,mmueller,jonathan}@cs.ualberta.ca

Abstract

This document describes Macro-FF, an adaptive planning
system developed on top of FF version 2.3. The original FF
is a fully automatic planner that uses a heuristic search ap-
proach. In addition, Macro-FF can automatically learn and
use macro-actions with the goal of reducing the number of
expanded nodes in the search. Macro-FF also includes im-
plementation enhancements for reducing space and CPU time
requirements that could become performance bottlenecks in
some problems.

Introduction
Macro-FF is an extension of the automatic planner FF ver-
sion 2.3 (Hoffmann & Nebel 2001). We developed a first
version of Macro-FF as a tool for exploring how macro-
actions can reduce the complexity of automated planning
(Botea, Müller, & Schaeffer 2004). Further extensions
have been implemented to prepare Macro-FF for participat-
ing in the fourth international planning competition (IPC4).
Macro-FF is designed for classical planning and can use
both STRIPS and ADL domain formulations. The plans that
Macro-FF produces are not guaranteed to be optimal. The
system has no capabilities for temporal and metric planning,
and implements no support for derived predicates and timed
initial literals.

This extended abstract summarizes the architecture of
Macro-FF. The structure of our presentation is the follow-
ing: First, we provide a brief description of FF, focusing on
the parts that are relevant for our work. Next, we describe
the main contributions that we have added to the original
FF. The extensions that we present mainly go into two di-
rections:
• Speeding up search with macro-operators. A macro-

operator is an ordered sequence of operators together with
a variable mapping showing how the variable sets of op-
erators overlap. The intuition for using macro-actions is
that several actions can often work in a sequence to ac-
complish a local task (e.g., first take the key out of the
pocket, next unlock the door). Identifying and exploit-
ing such sequences have a significant potential to reduce
the overall planning effort. Macro-FF can automatically

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

learn and use macro-actions with the goal of reducing the
number of expanded nodes in the search.

• Implementation enhancements for reducing memory and
CPU time requirements. The number of expanded nodes
and the solution quality are not affected by changes in
this category. However, when the memory or CPU time
necessary to solve a problem are larger than the available
resources, this kind of improvements can make the differ-
ence between failure and success in solving a problem.

Overview of FF
FF is a state-of-the-art fully automatic planner that uses a
heuristic search approach. The basic version of FF, which
we started from, is designed for classical planning. Spe-
cialized versions of FF have capabilities for planning with
numerical state variables (Metric-FF) and planning with in-
complete information (Conformant-FF).

FF uses a preprocessing phase that includes the gener-
ation of all facts (i.e., instantiated predicates) and actions
(i.e., instantiated operators) that could possibly be used in
the current problem instance. These elements, which are ex-
tensively used during the search, become available at little
runtime cost.

FF automatically computes a heuristic state evaluator that
guides the search process. Given a state, the distance to a
goal state is approximated by the length of a relaxed plan
that achieves the goal conditions starting from the current
state. This plan is computed in a relaxed GRAPHPLAN
framework, where the delete effects of actions are ignored.

The planner implements two search algorithms. Enforced
hill climbing (EHC) is a fast but incomplete algorithm that
greedily searches for a goal state in the problem space. EHC
starts from the initial state and performs a local search using
a breadth-first strategy. When a state with a better evaluation
than the starting state is found, the current local search stops
and a new local search is launched starting from the newly
found state.

In EHC, the GRAPHPLAN computation for a state is
used not only to find a heuristic evaluation, but also to fur-
ther prune the search space through a mechanism called
helpful action pruning. When a state is expanded, only
moves that occur in the relaxed plan and belong to level
0 of the GRAPHPLAN (i.e., can be applied to the current

edelkamp
 15

state) are considered. With no helpful action pruning, EHC
is complete in undirected search spaces.

EHC stops when either a goal state is found, or the open
list associated with the current local search is empty. When
the second alternative occurs (i.e., EHC fails because of its
incompleteness), a complete best-first search (BFS) algo-
rithm is launched to find a path to a goal state.

Learning and Using Macro-Operators
When treated as single moves, macro-actions have the po-
tential of influencing the planning process in two important
ways. First, macros can change the search space, adding to
a node successor list states that would normally be achieved
in several steps. Intermediate states in the macro sequence
do not have to be evaluated, reducing the search costs con-
siderably. In effect, the maximal depth of a search could
be reduced for the price of slightly increasing the branching
factor. Second, macros can improve the heuristic evalua-
tion of states. As shown before, FF computes this heuristic
by solving a relaxed planning problem (i.e., the delete ef-
fects of actions are ignored) in a GRAPHPLAN framework.
Consider two normal actions that occur in a sequence in a
relaxed plan. It is not guaranteed that this chaining trans-
lates to a valid action sequence in the real world (e.g., when
the first action has a delete effect that is a precondition for
the second action). Consider now the case when two ac-
tions compose a macro, so that the relaxed plan contains that
macro rather than two separate actions. A relaxed macro can
always be translated to its correspondent in the real world,
as any other action does.

Learning Phase
Macro-FF learns a set of macros through a training phase
that uses several sample problems of a domain. Each train-
ing problem is first solved with no macros in use. The found
plan P is represented as a directed solution graph, where
each node represents a plan action, and edges show the rela-
tive order and distance between two actions in the solution.
If action a1 occurs before action a2 in P , then a weighted
edge e = (a1, a2) is added to the graph. The weight is the
distance between a1 and a2 in the solution.

We define a macro-action as a linear sequence in the so-
lution graph, with the corresponding parameter mapping.
To reduce the training effort, our implementation consid-
ers only sequences of two consecutive actions as possi-
ble macros (i.e., only pairs of nodes linked by edges with
weight 1).

The macro-actions are mapped to macro-operators by re-
placing the instantiated parameters with generic variables.
Macro-operators have weights (initially set to 1.0) and are
stored in a global list ordered by their weights.

For each macro-operator m, the current training problem
is re-solved using m. To measure the usefulness of m, we
compare the effort to solve the problem with macro m in use
to the initial solving effort. We evaluate the effort to solve a
problem as the total number of expanded nodes. The weight
update formula for m uses the difference between N (the
effort for solving the problem with no macros in use) and

Nm (the effort when macro m is used). A sigmoid function
maps the difference into the range (−1, 1). The update value
further contains the initial solution length as a multiplicative
factor, which measures how hard the current problem is. The
harder the problem, the larger this weight update should be.
After the training phase completes, the best macros can be
used in the solving phase.

Solving Phase
Current Implementation. For IPC4, we store the macros
using a compact representation. This includes the ids of the
operators that compose the macro and the variable mapping,
but ignores the precondition and effect formulas. In the solv-
ing mode, the compact patterns of the best macros are used
for online checking if two instantiated actions compose a
macro. The current implementation uses macros to change
the search space (as shown next), but does not affect the
computation of the heuristic state evaluation. Improving the
heuristic state evaluation with macros is an important topic
for future work.

To explore the search space more efficiently, we exploit
the relaxed plan that the system computes for the current
state to be expanded. Our idea is to try to execute parts of
the relaxed plan in the real world, hoping to move toward a
goal state faster. We examine the relaxed plan to find action
sequences that match a macro pattern. Each time when such
a sequence is identified, we check if this could be executed
in the real world, starting from the current state. This veri-
fication is fast, as we do not compute the evaluation of the
states along the execution path. If executing a macro-action
succeeds, we consider the resulting state as a successor of
the current state and add it to the open queue.

In enforced hill climbing, we order these macro succes-
sors before the regular successors of a state. In effect, macro
successors are expanded earlier than regular successors. In
addition, our code includes an ordering scheme for normal
successors, which we had developed before using macro
successors. In the current implementation, this still might
be useful in cases when a macro is not part of the relaxed
plan, but could occur in the real world. We order the normal
successors giving priority to moves that continue as a macro
sequence the last action on the current branch (i.e., the ac-
tion that led to the currently expanded state S). We split
the normal successors of state S into two subsets Succ1(S)
and Succ2(S). Assume aS is the action that we applied to
obtain S, and aS′ is the action that we apply from S to ob-
tain a successor S′. If pair (aS , aS′) matches the pattern
of a learned macro operator, then S ′ ∈ Succ1(S). Other-
wise, S′ ∈ Succ2(S). Elements from Succ1(S) are ordered
before elements from Succ2(S). Inside such a set, an ad-
ditional move ordering scheme, preserved from the original
FF, is applied.

In best-first search, macros act as a method for search
depth control. In the original implementation, when a node
is expanded, all its normal successors are added to the open
list, except for states that have been visited before (a trans-
position table is used to identify duplicates). In addition to
this, our new implementation explores branches that com-
pose a macro more deeply. States are further expanded on

edelkamp
 16

the branches that match a macro pattern, and the resulting
states are added to the open list earlier than in the origi-
nal FF.

Alternative Approach. Another possible way of using
macro-operators is to add them as normal single-step opera-
tors to the initial domain formulation, as described in (Botea,
Müller, & Schaeffer 2004). In this way, macro-actions are
naturally used in both exploring the search space (i.e., as
possible moves when nodes are expanded) and computing
the heuristic state evaluation in the relaxed GRAPHPLAN
framework, with no need to change the original code of FF.
In effect, the number of expanded nodes can be reduced for
the price of increased preprocessing time and cost per node
at run-time.

This approach was hard to use in IPC4, as the macro-
operators added to the domain formulation have to have
complete PDDL definitions, including precondition and ef-
fect formulas. Expressing these formulas starting from the
contained operators is easy in STRIPS, but hard in more
complex PDDL subsets such as ADL, where the precondi-
tions and the effects of the contained operators can interact
in a very complex way. However, for IPC4, we used the
ADL formulation for several domains that were available
both in ADL and STRIPS. The reason is that the STRIPS
formulation of these domains have a separate operator file
for each problem. This makes our learning algorithm hard
to apply, as several training problems are necessary for a
given domain definition.

Implementation Enhancements
The enhancements described in this section have the goal
of reducing the space and CPU requirements of the plan-
ner, and do not affect the number of expanded nodes and the
quality of found plans. We describe two enhancements, one
for speeding-up the best-first search and one for reducing the
space needs for the preprocessing.

The best-first search (BFS) algorithm uses an open list of
nodes that have been generated but not expanded yet. The
elements in this list are stored in increasing order according
to their heuristic evaluation, so that the next node chosen for
expansion is the most promising in the list. FF version 2.3
implements the open queue as a linear linked list. A node
insertion requires a linear traversal of the list, so that the or-
dering of the list is preserved. Experiments with some of the
competition problems have shown that this linear traversal
can be a serious bottleneck for best-first search. We changed
the original linked list of nodes to a linked list of buckets,
where each bucket is a linked list of nodes having the same
heuristic value. The insertion of a node requires finding the
appropriate bucket for that node, which takes time linear in
the number of different heuristic values in the open queue
plus a constant time for inserting the node at the end of the
bucket (this preserves the existing tie-breaking rule).

FF version 2.3 is optimized for speed by using preprocess-
ing to a large extent. Some of the data structures used for
holding the preprocessing information grow exponentially
with the problem complexity, so that this method does not
scale to more complex problems. We took an initial step to

address this problem by replacing a large lookup table by a
different data structure. The lookup table was used for hold-
ing instantiated facts that occur in the initial state. The new
implementation uses a balanced binary tree for logarithmic
lookup time.

Acknowledgment
This research was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) and Al-
berta’s Informatics Circle of Research Excellence (iCORE).
We thank Jörg Hoffmann for making the source code of FF
available.

References
Botea, A.; Müller, M.; and Schaeffer, J. 2004. Using Com-
ponent Abstraction for Automatic Generation of Macro-
Actions. In Proceedings of the International Conference
on Automated Planning and Scheduling ICAPS-04.
Hoffmann, J., and Nebel, B. 2001. The FF Planning Sys-
tem: Fast Plan Generation Through Heuristic Search. Jour-
nal of Artificial Intelligence Research 14:253–302.

edelkamp
17

Optiplan: Unifying IP-based and Graph-based Planning

Menkes van den Briel1 and Subbarao Kambhampati2
1Department of Industrial Engineering,2Department of Computer Science and Engineering

Arizona State University, Tempe AZ

Abstract

The Optiplan planning system combines the ideas pre-
sented by Vossenet al. (1999) and Kautz and Sel-
man (1998). It unifies integer programming with graph-
based planning and computes optimal parallel length
plans for STRIPS based planning problems. In addition,
given a feasible parallel length, Optiplan can be used to
minimize the number of actions, minimize action cost,
or optimize any other objective that can be expressed as
a linear function.

OptiPlan
Optiplan is a domain independent planner that, like ILP-
PLAN (Kautz & Walser 1999) and the “state change model”
(Vossenet al. 1999), uses integer programming (IP) to solve
STRIPS planning problems. The architecture of Optiplan is
very similar to that of Blackbox (Kautz & Selman 1999) and
GP-CSP (Do & Kambhampati 2001), but instead of unify-
ing satisfiability or CSP with graph based planning, Optiplan
uses integer programming. Like Blackbox and GP-CSP, Op-
tiplan works in two phases. In the first phase the planning
graph is build and transformed into an IP, then in the second
phase the IP is solved using the commercial solver CPLEX
(ILO 2002). The IP formulation is based on the state change
formulation (Vossenet al. 1999), however, a few changes
have been added that “strengthen” the original formulation
and make it more general at the same time.

A practical difference between the state change model and
Optiplan is that the former takes as input all ground ac-
tions and fluents over all time steps, while the latter takes
as input just those actions and fluents that are instantiated
by Graphplan (Blum & Furst 1995). The use of a plan-
ning graph has a significant effect on the size of the final
encoding, independent of which combinatorial transforma-
tion method (IP, SAT, or CSP) is used. For example, Kautz
and Selman (1999) pointed out that Blackbox’s success over
Satplan was mainly explained by Graphplan’s ability to pro-
duce better, more refined, propositional structures than Sat-
plan. Another, although minor, practical difference between
Optiplan and the state change model is that Optiplan reads
in pddl files, allowing it to be directly compared to other
STRIPS based planners.

In order to present the improved state change formulation
that is used in Optiplan we introduce the following sets and
variables: (The reader familiar with the work by Vossenet

al. (1999) may want to skim through the formulation of the
model and note that the variablesxpredel

f,i , for all f ∈ F, i ∈
1, ..., t have been deleted and the variablesxdel

f,i , for all f ∈
F, i ∈ 1, ..., t have been added to the original formulation.):

• F , set offluents, the set of all instantiated propositions;

• A, set ofactions, the set of all instantiated operators;

• I ⊆ F , set of fluents that are true in the initial state;

• G ⊆ F , set of fluents that must be true in the goal state;

• pref ⊆ A, ∀f ∈ F , set of actions that have fluentf as
precondition;

• addf ⊆ A,∀f ∈ F , set of actions that have fluentf as
add effect;

• delf ⊆ A, ∀f ∈ F , set of actions that have fluentf as
delete effect;

The state change formulation defines variables for each
stepi in the planning graph. There are variables for the ac-
tions and there are variables for the possible state changes
a fluent can make. For alla ∈ A, i ∈ 1, ..., t we have the
action variables

ya,i =
{

1 if actiona is executed in periodi,
0 otherwise.

The “no-op” actions are not included in theya, i variables
but are represented separately by the state change variable
xmaintain

f,i . For all f ∈ F, i ∈ 1, ..., t we have the state
change variables

xmaintain
f,i =

{
1 if fluent f is propagated in periodi,
0 otherwise.

xpreadd
f,i =

{ 1 if actiona is executed in periodi
such thata ∈ pref ∩ a /∈ delf ,

0 otherwise.

xadd
f,i =

{ 1 if actiona is executed in periodi
such thata /∈ pref ∩ a ∈ addf ,

0 otherwise.

xdel
f,i =

{ 1 if actiona is executed in periodi
such thata /∈ pref ∩ a ∈ delf ,

0 otherwise.

edelkamp

edelkamp
 18

In summary:xmaintain
f,i = 1 if the truth value of a flu-

ent is propagated;xpreadd
f,i = 1 if an action is executed that

requires a fluent and does not delete it;xadd
f,i = 1 if an ac-

tion is executed that does not require a fluent and adds it;
andxdel

f,i = 1 if an action is executed that does not require a
fluent and deletes it.

There are a few differences with the original state change
formulation and the formulation in Optiplan. Optiplan in-
troduces thexdel

f,i variables in order to deal with actions
that delete fluents without requiring them as preconditions.
Many planning domains in the International Planning Com-
petition 2004 have such actions, making the original state
change formulation ineffective. In addition, the new formu-
lation has substituted out allxpredel

f,i variables by the expres-
sion

∑
a∈pref∪delf

ya,i. The updated formulation is given
by:

min
∑

a∈A

∑

i∈T

ya,i (1)

s. t. xadd
f,0 = 1, ∀f ∈ I (2)

xadd
f,0 = 0, ∀f /∈ I (3)

xadd
f,t + xmaintain

f,t + xpreadd
f,t ≥ 1 (4)

∑

a∈addf /pref

ya,i ≥ xadd
f,i (5)

ya,i ≤ xadd
f,i (6)

∑

a∈pref /delf

ya,i ≥ xpreadd
f,i (7)

ya,i ≤ xpreadd
f,i (8)

∑

a∈delf /pref

ya,i ≥ xdel
f,i (9)

ya,i ≤ xdel
f,i (10)

xadd
f,i + xmaintain

f,i + xdel
f,i +

∑

a∈pref∪delf

ya,i ≤ 1

(11)

xpreadd
f,i + xmaintain

f,i + xdel
f,i +

∑

a∈pref∪delf

ya,i ≤ 1

(12)

xpreadd
f,i + xmaintain

f,i +
∑

a∈pref∪delf

ya,i ≤

xpreadd
f,i−1 + xadd

f,i−1 + xmaintain
f,i−1 (13)

xpreadd
f,i , xadd

f,i , xdel
f,i , x

maintain
f,i ∈ {0, 1} (14)

ya,i ∈ {0, 1} (15)

Where constraints (2), and (3) represent the initial state
constraints, and (4) represent the goal state constraints. For
all f ∈ F , i ∈ 1, ..., t, constraints (5) to (10) represent the
logical interpretations between the action and state change

variables, and for allf ∈ F , i ∈ 1, ..., t constraints (11) and
(12) make sure that fluents can only be propagated at periodi
if and only if there is no action in periodi that adds or deletes
the fluent. For allf ∈ F , i ∈ 1, ..., t, constraints (13) de-
scribe the backward chaining requirements. Constraints (14)
and (15) are the binary constraints for the state change and
action variables respectively. Since the constraints guarantee
plan feasibility, no objective function is required, however,
Optiplan uses an objective that minimizes the number of ac-
tions taken to guide the search.

Optiplan shows an increased performance over the origi-
nal state change encoding, but it remains significantly slower
than, for example, Blackbox(Chaff). Table 1 shows a com-
parison between the original state change formulation and
Optiplan on a set of problems that we could test both en-
codings on. All tests were run on a Pentium 2.67 GHz with
1.00 GB of RAM and the IP encodings were solved using
CPLEX 8.1. For all problems Optiplan creates smaller en-
codings than the original state change formulation, and in all
but two instances (the two rocket problems) Optiplan’s for-
mulation is solved at least as fast as the original state change
formulation.

Often times only a few nodes are explored in the branch-
and-bound tree, this indicates that the LP relaxation provides
a good approximation to the convex hull of integer solutions.
Still, however, our IP approaches are easily outperformed
by planners like Blackbox(Chaff). Possible reasons for this
performance gap is that the CPLEX’s integer programming
solver is not specialized in solving pure 0-1 programming
problems and because many “expensive” matrix operations
are required when solving the LP relaxation. When these
shortcomings are resolved, for example, through the use of
special purpose algorithms like branch-and-cut, decompo-
sition, or column generation, Optiplan and IP approaches
in general could become competitive with other successful
planners.

References
Blum, A., and Furst, M. 1995. Fast planning through plan-
ning graph analysis. InProceedings of the International
Joint Conference on Artificial Intelligence (IJCAI), 1636–
1642.
Do, M., and Kambhampati, S. 2001. Planning as constraint
satisfaction: Solving the planning graph by compiling it
into csp.Artificial Intelligence132(2):151–182.
ILOG Inc, Mountain View, CA. 2002.ILOG CPLEX 8.0
User’s Manual.
Kautz, H., and Selman, B. 1999. Blackbox: Unifying sat-
based and graph-based planning. InProceedings of the In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), 318–325.
Kautz, H., and Walser, J. 1999. State-space planning by
integer optimization. InProceedings of the 17th National
Conference of the American Association for Artificial In-
teglligence, 526–533.
Vossen, T.; Ball, M.; Lotem, A.; and Nau, D. 1999. On the
use of integer programming models in ai planning. InPro-
ceedings of the International Joint Conference on Artificial
Intelligence (IJCAI), 304–309.

edelkamp
 19

State change model Optiplan
Problem #Var. #Cons. #Nodes Time #Var. #Cons. #Nodes Time
bw-sussman 196 347 0 0.01 105 142 0 0.01
bw-12step 1721 3163 15 4.53 868 1040 4 1.58
bw-large-a 2729 5106 0 5.04 1800 2104 0 3.91
bw-large-b 6502 12224 25 932.26 4780 5466 9 236.45
att-log0 33 41 0 0.01 6 8 0 0.01
att-log1 151 188 0 0.01 49 71 0 0.01
att-log2 330 420 14 0.05 130 193 0 0.01
att-log3 2334 3785 0 0.26 250 455 0 0.06
att-log4 2330 3775 42 0.59 449 850 0 0.12
att-loga 3146 5091 3583 366.44 1671 3258 80 29.84
rocket-a 1615 2694 169 8.80 1127 2365 49 12.38
rocket-b 1696 2829 122 8.27 1187 2516 27 11.58
log-easy 1521 2254 32 0.86 555 1088 0 0.14
log-a 3933 6306 174 48.36 1671 3258 80 29.74
log-b 4684 7202 1797 391.75 1962 3830 41 40.67
log-c 5886 9324 1378 946.23 2691 5370 114 183.96

Table 1: Comparing the original state change formulation with Optiplan. #Var. and #Cons. give the number of variables and
constraints after CPLEX’s presolve. #Nodes give the number of nodes that were explored during branch-and-bound before
finding the first feasible solution.

FAP: Foward Anticipating Planner

Guy Camilleri and Joseph Zalaket
IRIT CCI-CSC,

Universit́e Paul Sabatier,
118 route de Narbonne,

31062 Toulouse Cedex 4 FRANCE
camiller@irit.fr zalaket@irit.fr

Abstract

In this paper we introduce a new planning system FAP based
on the heuristic search. For the heuristic calculation, FAP
combines the techniques used in abstraction and heuristic
planning. FAP calculates his heuristic by projecting the plan-
ning problem in a relaxed problem where the delete lists of
the actions are ignored and the actions are grouped in se-
quences according to their order of application. FAP uses the
calculated heuristic to guide its search on a N-Best-Search
Hill-Climbing algorithm which is a combination of the N-
Best-Search and Hill-Climbing algorithms.

Introduction
The heuristic search has enhanced the performance of plan-
ning algorithms. Planners like HSP (0) HSPr (0) and FF
(0) has shown the ability of solving large planning problems
according to the classical previous planners. The heuristic
used buy the most of the current planners is based on the
idea of McDermott (0) as well as Bonet et al. (0), which
propose the relaxation of the problem in a simpler problem
by ignoring the delete lists of the actions. Also the heuris-
tic idea was early used in the hierarchical planning in a king
of relaxing the problem buy projecting it in an abstract prob-
lem where the solution can be found faster (see planners like
NOAH (0), NONLIN (0)). The abstraction used in hierarchi-
cal planning was often based on the actions or states group-
ing. In this paper we introduce a new planning system FAP
based on the heuristic search. For the heuristic calculation,
FAP combines the techniques used in abstraction and heuris-
tic planning. FAP calculates the heuristic by projecting the
planning problem in a relaxed problem where the delete lists
of the actions are ignored and the actions are grouped in se-
quences according to their order of application. FAP uses
the calculated heuristic to guide its search on a N-Best Hill-
Climbing heuristic Search algorithm which is a combina-
tion of the N-Best heuristic Search and Hill-Climbing algo-
rithms. In the rest of this paper we present an overview of
our work. We explain the sequences meta-actions calcula-
tion. We present the generation of the sequences to finish
with the main search algorithm.

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Overview

FAP is a forward planner in a state space which combines
heuristic search planning techniques with a ”state grouping”
approach. As HSP (0), FF (0), etc. state’s heuristic1 is com-
puted from a solution of a relaxed problem. The relaxed
problem2 ignores action’s delete list and is solved through
a planning graph similar to the GraphPlan’s planning graph
(0). The state grouping approach constitutes the main orig-
inality of this work. It aims at reducing state search space
by grouping states, and is done through the generation of
meta-actions ”sequences” rather than building states shapes
as in ShaPer (0) or states abstractions as in some hierarchical
planning systems like ALPINE (0).

During the search, FAP generates new actions (or meta-
actions) corresponding to the actions ”sequence” called an-
ticipations. These actions ”sequence” are used like the other
ones in the planning graph, in the states search space and can
belong to other actions ”sequence”. In this way, all states are
not considered in the search space.

All candidate actions to the sequence generation are
pulled out from the planning graph. The actions selection
during the extraction of the relaxed solution is essential be-
cause they do not only participate to the heuristic calculation
but also to the state grouping. Currently, FAP extracts the
relaxed solution in regression (from the last level) and uses
some local criteria to select actions in the planning graph.

The main search algorithm used in FAP is an extension
of the N-Best heuristic Search algorithm NBS (proposed in
(0)) called N-Best heuristic Hill-Climbing Search algorithm
NBHCS. This algorithm is complete and can be viewed as a
kind of Hill-Climbing algorithm with a backtracking. There-
fore FAP considers all applicable actions (not only the antic-
ipations) to be complete.

For each state, FAP applies the following steps:

1. Relaxed planning graph building (similar to FF),

1The heuristic corresponds to an estimation of the distance in
number of actions between the initial state and the goal.

2In STRIPS, a planning problemP = (O, I, G) is define by
a set of operatorsO which change the world state, an initial state
I and a goalG to satisfy. The operators of the considered relaxed
problemP ′ = (O′, I, G) correspond to the operators of the prob-
lemP without the delete list.

edelkamp
 21

2. Relaxed solution extraction which defines the candidate
actions and the heuristic,

3. Sequence actions generation (in progression and then in
regression).

In the first part of this paper, the meta-action ”sequence”
is briefly presented . Then, we expose the selection of rele-
vant actions corresponding to the relaxed solution, the se-
quence actions generation and the state search algorithm
NBHCS

Meta-action ”Sequence”
A ground actionα in STRIPS is described by the follow-
ing lists: param(α) is the list of action’s parameters, pre(α)
is the list of preconditions which must hold for action’s ap-
plication, add(α) and del(α) lists are respectively the list of
addition and the list of deletion of the action.

Definition 1 The meta-action ”sequence”B(α1,α2) is de-
fined by:

• param(B(α1,α2))=(α1,α2)
• pre(B(α1, α2))= pre(α1) ∪ (pre(α2)� add(α1))
• add(B(α1,α2))= [add(α2)∪ (add(α1)� del(α2))] � pre(

B(α1, α2))
• del(B(α1,α2))= [del(α2) ∪ (del(α1) � add(α2))] ∩ pre(

B(α1, α2))

Moreover, Fap used the following properties on the meta-
action ”sequence”:

Definition 2 Two ground actionsα1 and α2 are S-
independentiff pre(B(α1, α2))= pre(B(α2, α1)), add(B(α1,
α2))= add(B(α2, α1)) and del(B(α1, α2))= del(B(α2, α1)).

Definition 3 A sequenceB is correct iff it exists a states
reachable from the initial state such asB is applicable ins.

Relevant actions extraction and sequences
generation

For each state FAP builds a relaxed planning to calculate
the heuristic of that state. Actions are extracted from this
planning graph in regression. The extraction process starts
from the goals in the last level and go back to the first level0.
For each goal in the current level, only one action is selected
from the previous level for sequence building according to
some local criteria. The preconditions of the chosen actions
are then added to the goal set and then the process goes back
to the previous level until the first level is reached.

The local criteria use the following relation of authoriza-
tion:

Definition 4 An action α1 authorizesα2 iff del(α1) ∩
pre(α2) = ∅

Definition 5 A sequenceB(α1, α2) where level(α1)=i and
level(α2)=i + 1 is consideredusefulat a leveli iff it exists
an atomp such as level(p)=i andp ∈ add(α1) ∩ pre(α2).

The local criteria describe some selection rules between
actions belonging to two successive action’s levels. For each
goalsg at a leveli, an actionα is chosen at the leveli − 1
if 1) g ∈ add(α) and 2) for all actionsβ in the leveli such
asg ∈ pre(β), α authorize β andα minimize thedifficulty
of B(α, β) whith difficulty(a) =

∑
p∈pre(a)

level(p). From

this selection, only actions which maximize the number of
goals of the leveli are chosen so as all level goals belong to
an add list of these actions.

The meta-actions ”sequences” are generated from a par-
tial planning graph containing only the extracted actions. A
first generation is done in forward from the actions in the
level 0 in the following way: if all actionsαi in level 0
are many to manyS-independentthen generate the sequence
B
i
αi. Then for all generated sequencesB

k
in a level i and

all actionsβ in the leveli + 1, only theusefulsequences
B(B

k
, β) are computed. The process stops when the last level

is reached or if any sequences can be generated at the current
level c.

In the second generation, only theusefulsequences are
computed by pairs of successive levels in backward from
the last level to the levelc.

NBHCS algorithm
The search algorithm used in FAP is an instantiation of the
N-Best heuristic Search Algorithm (NBS). The NBS algo-
rithm is at a time a functional extension and a simpler im-
plementation of the First Best Search algorithm. In many
planning problems, a state has a big number of successors,
which decreases the planning performance if all of them are
visited. The idea of the NBS algorithm is to generate a lim-
ited number N of successors at a time instead of generating
all of them, then to expand the graph for the next N succes-
sors if no solution found and so on. Moreover, because the
graph can be expanded every time the solution is missed up
to containing all the successors, this algorithm is complete.

In the figure 1, the NBS algorithm is presented. The
search process could be defined as a quadruplet (Sc,G,Γc,Si)
where Sc is the current best state, G is the goal,Γc is the set
of operators applicable to Sc and Si is the initial state. Any
state Sn is completely expanded when its successors states
are memorized and this state is kept in a list of all completely
expanded states named Closed. A state Sk is partially ex-
panded whenever it does not have any memorized successor
or a part of its successor states are kept, all of these states
are included in a list of states called Open.

Our N-Best heuristic Hill-Climbing Search algorithm
is an NBS algorithm with a specification of the gener-
atebestsuccessors function (see figure 2). As in Hill-
Climbing search algorithm, the process of generating suc-
cessors stops when a best successor is found. Let remark
that in FAP the order in which the actions are memorized in
the setΓc is very important because it defines the expansion
strategy. The memorized order is: the generated sequences,
the helpful actions (like the ones used in FF) and then the
others, of course all these actions are applicable in the cur-
rent state. Therefore, in a first stage the sequences are ap-

edelkamp
 22

edelkamp

plied, in a second the helpful and then the other actions. By
this way, FAP is complete.

Algorithm 1 The N-Best heuristic Search Algorithm

Open← {(Si,Γ0)};
Closed← ∅;
while Open6= ∅ do

(Sc,Γc)=get statewith min f(Open);
generatebestsuccessors(N,Sc,Γc);
if bestsuccessors(Sc) ∩ G 6= ∅ then

return Sc;
end if
Open← Open∪ bestsuccessors(Sc);
if Γc = ∅ then

Open← Open� {(Sc,Γc)};
Closed← Closed∪ Sc;

else
updateΓ(Sc,Γc);

end if
end while
return Failure;

Algorithm 2 generatebestsuccessors strategy
Successors← ∅;
repeat

γ ← element(Γc);
S← apply(Sc,γ);
Successors← Successors∪ {S};

until f(S) < f(Sc)
return Successors;

Conclusion
This paper shows a new heuristic search planner based on
the problem relaxation by action grouping. In the palnnign-
graph, the generation of sequences ”actions group” and their
application can be more informative as a heuristic guide than
the separated actions application. The main search algo-
rithm can recuperate the time that the computation of se-
quences takes. Therefore, the main search algorithm can
use a shorter path to achieve the goal with sequences than
with direct heuristics. The main stake is to build the best
sequences by choosing the actions as possible in the order
of their applications to access the result as fast as possible.
This will be our future work where we aim to refine the lo-
cal criteria in a way to obtain optimal sequences, and by
consequence to reduce the search time and the search space.
Another extension to FAP will be the introduction of actions
with conditional effects, where we thought the local criteria
refinement would be harder to generate relevant sequences
instead of generation a sequence for each possibility.
The main search algorithm of FAP is the N-Best-Hill-
Climbing which is complete and in which we can go back to
revisit previous actions when needed. But our experiments
have showed that the result is often achieved in the first pass.

References
B. Bonet, G. L., and Geffner, H. 1997. A robust and fast
action selection mechanism for planning.to appear in the
AAAI-97 Proceedings.
Blum, A. L., and Furst, M. L. 1995. Fast planning through
planning graph analysis.Proceedings of the 14th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI95)
1636–1642.
Bonet, B., and Geffner, H. 2000. HSP: Heuristic search
planner.Entry at AIPS-98 Planning Competition, AI Mag-
azine21(2).
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search.Artificial Intelligence129:5–33.
Guéŕe, E., and Alami, R. 2001. One action is enough to
plan. IJCAI 17:439–444.
Hoffman, J. 2001. FF: The fast-forward planning system.
AI Magazine22:57 – 62.
Knoblock, C. 1994. Automatically generation abstractions
for planning.Artificial intelligence68(2):243–302.
McDermott, D. 1996. A heuristic estimator for means
ends analysis in planning.Proceedings of the 3rd Interna-
tional Conference on Artificial Intelligence Planning Sys-
tems. AIPS.
Pais, J., and Pinto-Ferreira, C. 1999. he n-best heuristic
search algorithm.In proceedings of the 18th Workshop of
the UK Planning and Scheduling Special Insterest Group
PLANSIG99, England.
Sacerdoti, E. D. 1975. The nonlinear nature of plans.In
Proceedings of the Fourth International Joint Conference
on Artificial Intelligence (IJCAI-75)206–214.
Tate, A. 1977. Interacting goals and their use.In proceed-
ings of the 5th International Joint Conference on Artificial
Intelligence (IJCAI-77)888–893.

edelkamp
 23

Marvin: Macro Actions from Reduced Versions of the Instance
Andrew Coles and Amanda Smith

Department of Computer and Information Sciences,
University of Strathclyde,

Livingstone Tower,
26 Richmond Street,

Glasgow,
G1 1XH

email: firstname.lastname@cis.strath.ac.uk

Abstract

Marvin is a forward-chaining heuristic-search planner.
The basic search strategy used is similar to FF’s en-
forced hill-climbing with helpful actions (Hoffmann &
Nebel 2001); Marvin extends this strategy, adding extra
features to the search and preprocessing steps to infer
information from the domain.

Introduction to Marvin
Marvin is a forward-chaining domain-independent planner
that uses a relaxed-plan heuristic to guide its search. The
name Marvin stands for Macro-Actions from Reduced Ver-
sions of the INstance and gives some insight into the way
in which the planner works: it attempts to create a reduced
instance of the problem with which it is presented, solve
this smaller instance, and then use the solution to assist with
solving the original problem.

Basic Search Strategy

The basic search used is similar to FF’s enforced hill-
climbing with helpful actions (Hoffmann & Nebel 2001);
Marvin extends this strategy, adding extra features to the
search and preprocessing steps to infer information from the
domain. This section details the modifications made to the
search strategy.

When plateaux are encountered Marvin resorts to best-
first search as opposed to breadth-first search—in prac-
tise this improves its performance but may increase the
makespan of the plan.

To reduce the overheads incurred by memoising already-
visited states no record is kept of visited states if search
is progressing normally; however, should a plateau be en-
countered, the differences between states on the plateau and
the state at the start of the plateau are memoised, and states
whose difference has already been memoised are pruned.

To prune action choices Marvin constructs groups of sym-
metric objects (objects with identical properties), extracts
one exemplar from each group and then prunes actions
which involve any entities which are not the exemplar for
their group; for example, in the gripper domain, if two balls
are symmetrical in a given state it will only consider apply-
ing the pickup action to one of them.

Marvin can exploit the potential for concurrency in solu-
tion plans by considering, at each choice point, all of the
actions that could be applied at the current time point (t) be-
fore considering the actions that could be applied at the next
time point (for non-temporal domains this is simplyt + 1).
This approach increases the branching factor and could thus
become very expensive during periods of exhaustive search;
hence, during such periods the concurrency reasoning is sus-
pended until the plateau is escaped. The steps to escape a
plateau are then post-processed to reintroduce concurrency
where possible.

Instance Reduction
Before attempting to solve the problem instance with which
it is presented, Marvin creates a smaller instance of the prob-
lem. This approach was motivated by the observation that
small instances can be solved quickly and their solutions of-
ten contain action sequences similar to those in solutions for
larger problem instances. Any knowledge that can be ob-
tained inexpensively by solving a smaller instance will be
valuable in solving the larger instance that was given to the
planner.

Smaller instances are created using symmetry and almost-
symmetry. Two objects are symmetric if, and only if, they
share the same predicates in the initial and goal states: this is
the definition of symmetry used previously by STAN version
3 (Fox & Long 1999). In many domains this reduction does
not discard sufficient entities to create a significantly smaller
problem, hence further pruning is desirable; this is achieved
through the use of almost-symmetry. In this context two
objects are almost symmetric if, and only if, the predicates
defining them in the initial and goal state are of the same
type and they differ only in groundings of one or more ar-
guments of a the predicates. For example, in the problem
below (where all predicates involving package1 and pack-
age2 are shown):

Initial State
at package1 loc1
at package2 loc2
. . .

Goal State
at package1 loc3

edelkamp
 24

edelkamp

at package2 loc4
. . .

the two packages are ‘almost-symmetric’: they only differ
by one binding in the initial state (the location they are at)
and one in the goal state (their destination).

Using this definition of almost-symmetry the symmetry in
the solution plan for these two entities will be captured, as
well as strict symmetry in the problem: if two objects share
the same predicates in the initial state (even if the ground-
ings of these predicates differ) it is likely that the same, or
a similar, plan can be used to achieve the required goals for
both objects.

When the extraction of groups of related objects is com-
pleted a new smaller problem instance is created by taking
one exemplar from each related group and including only
the predicates whose entities are wholly contained within
this set of exemplars; the smaller instance is then solved, us-
ing the search algorithm described in the previous section,
to generate a solution plan.

The plan generated to solve the smaller instance is pro-
cessed to produce macro-actions. Partial-order lifting is used
to extract independent threads of execution in the plan; af-
ter extraction independent threads are made into individual
macro-actions and are added to the list of actions to be used
in planning to solve the original instance. Whilst adding
actions does increase the branching factor the additional ac-
tions often assist in the planning process as they encapsulate
a previously-successful strategy for solving a similar prob-
lem.

It should be noted that for some domains—for example,
freecell—the reduced problem is unsolvable; in such situ-
ations it is usually the case that the problem is proven un-
solvable very quickly: the goals do not appear in the re-
laxed planning graph. For situations in which the goals are
present in the relaxed planning graph it is necessary to in-
troduce an upper bound on the plan length allowed to ensure
that an unreasonable amount of time is not spent solving the
smaller instance; in practise this does not prevent Marvin
from generating useful macro-actions as preliminary exper-
iments show large macro-actions are often too specialised to
a certain task and are therefore not reusable.

Plateau-Escaping Macro-Actions
Solutions to planning problems often contain a given se-
quences of actions more than once; if finding this reused
action sequence corresponds to exhaustive search a lot of
unnecessary search effort is expended in repeatedly attempt-
ing to find this action sequence. Marvin attempts to im-
prove on the plateau behaviour of previous forward-chaining
planners by memoising the action sequence which success-
fully lead from the start of a plateau to a strictly-better state;
these memoised action sequences form what are known as
plateau-escaping macro-actions. To reduce the overheads
of having a greater number of actions to consider at each
state these plateau-escaping macro-actions are only consid-
ered when plateaux are encountered: in normal search only
the original actions from the domain, and any actions de-
rived from the solution to the reduced instance, are used.

When solving the reduced instance any plateau-escaping
macro-actions devised are stored for use when later solving
the original problem; this has the useful side-effect of dis-
covering efficacious escape macros with less computational
effort—it is less computationally expensive to perform the
plateau-escaping search on the reduced instance of the prob-
lem. Furthermore, since the reduced instance is derived from
the original problem instance, it is often the case that the
heuristic breaks down when solving the reduced instance in
some of the places it breaks down when solving the original
problem instance.

As with the macro-actions created from the reduced ver-
sion of the instance the plateau-escaping macro-actions have
a partial order lifted out, the aim of which is to improve
the concurrency within them, reducing the makespan. Once
this processing has taken place the segment of plan which
escaped the plateau is replaced with the macro-action: the
macro-action may exploit concurrency which the original
plan segment did not.

Transformational Operators
Transformation operators are those operators that transform
a certain property of an object but leave other objects un-
changed; for example, the action move in the driverlog do-
main:

pre:
at (truck loc1)
linked(loc1 loc2)

add:
at (truck loc2)

del:
at (truck loc1)

transforms the ‘at’ property of trucks. The reusability of
macro-actions is adversely affected by transformation op-
erators, as they often appear in chains of varying lengths;
consequently, abstraction of the length of these chains is re-
quired if the macro-action is to be as reusable as possible.

Generating sequences of transformational operators is a
shortest path problem, which can be solved by a specialist
solver. Marvin currently recognises transformational oper-
ators by looking for a common fingerprint; however, in the
future TIM (Long & Fox 2000) will be used to provide a
method through which these operators can be identified in a
more-robust manner.

When transformational operators have been identified an
all-pairs shortest-path reachability analysis is done, during
which the best route between two states is stored; then, static
predicates for all pairwise reachable states are added to the
initial state so that Marvin can plan as if the states were all
linked. When an action is later selected for application the
main algorithm simply asks the sub-solver for the action se-
quence required to achieve the desired effect.

ADL
Marvin supports ADL natively; that is, without creating dis-
tinct STRIPS actions for each of the possible ADL action

edelkamp
 25

Figure 1: Example Satisfaction Tree

groundings. ADL support was written for the purpose of
solving the competition ADL domains—without it, due to
the nature of the STRIPS compilations provided, Marvin
would not have been able to construct any reusable macro
actions.

ADL preconditions are dealt with through the logical re-
duction of each operator’s preconditions to form a ‘Satisfac-
tion Tree’. The idea is to create a tree where the leaves are
predicates (or negations of predicates) and the internal nodes
are either conjunction or disjunction nodes (AND or OR);
then, predicates either help a given ground action become
applicable (if they appear as positive predicate leaves in its
satisfaction tree) or hinder its applicability (if they appear as
negative predicate leaves). The tree is formed by recursively
applying the following rules to each action’s preconditions:

(∀xf(x)) ⇒ (f(x0) ∧ . . . ∧ f(xn))
(∃xf(x)) ⇒ (f(x0) ∨ . . . ∨ f(xn))
(a ⇒ b) ⇒ (¬a ∨ b)
(¬(T0 ∧ . . . ∧ Tn)) ⇒ (¬T0 ∨ . . . ∨ ¬Tn)
(¬(T0 ∨ . . . ∨ Tn)) ⇒ (¬T0 ∧ . . . ∧ ¬Tn)

The first two of these simply compile out the existential
quantifiers dynamically; the third is a logical reformation of
the implies operator; the final two, forms of De Morgan’s
duality law, are used to force any negation into the subex-
pressions, and eventually to the predicates.

Figure 1 shows an example satisfaction tree for an action
in an imaginary domain in which objects can only have a
certain action applied to them if they are being held and are
either blue or green.

ADL effects are handled in a similar manner to precon-
ditions, in that they form ‘Effect Trees’; there are differ-
ences, however, due to the differing semantic structure be-
tween Preconditions and Effects: Effect Trees do not con-
tain OR nodes; instead they introduce ‘When’ nodes. When
nodes have two child branches - a condition branch (which
is, itself, a satisfaction tree) and an effect branch (which is
an effect tree). When an action is grounded any uncondi-
tional effects and effects contingent only on static predicates
are associated with the ground action instance; sub-actions
are then created to encapsulate any effects contingent on dy-
namic information.

The relaxed planning graph in Marvin is modified to ac-
count for the negative preconditions required by ADL. Be-
fore the ADL support was implemented a spike (Long & Fox
1999) for positive predicates was used; to build a relaxed
planning graph forward from a given state the spike was ini-
tialised to contain the predicates in a given state and then
grew as applied relaxed actions added predicates to it. To
support negative preconditions a second spike was created;
this spike is initialised to be empty and then any predicate
present in the initial fact layer which is then, later, deleted
is added to it. A negative precondition is then satisfied at
a given layer in the relaxed planning graph either if it isn’t
present in the initial fact layer or it has since appeared in the
negative fact spike.

Future Work
In the future Marvin will be extended to use the generic-
type recognition knowledge provided by TIM (Long & Fox
2000). This will, amongst other things, improve its sup-
port for transformational operators by providing a flexible
framework for their identification; also, it raises the possibil-
ity of using generic-type-derived heuristics to improve the
discrimination between states when the relaxed plan graph
heuristic reaches a plateau.

Marvin will also be extended to deal with Temporal Plan-
ning: as it already uses macro-actions and concurrency,
much of the framework is already complete.

References
Fox, M., and Long, D. 1999. The detection and exploita-
tion of symmetry in planning problems. InIJCAI, 956–961.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.Journal
of Artificial Intelligence Reserach14:253–302.
Long, D., and Fox, M. 1999. Efficient implementation of
the plan graph in STAN.Journal of Artificial Intelligence
Research10:87–115.
Long, D., and Fox, M. 2000. Automatic synthesis and
use of generic types in planning. InArtificial Intelligence
Planning Systems, 196–205.

edelkamp
 26

A Petri net based representation for planning problems
Marcos Castilho
André Guedes

Tiago Lima
João Marynowski
Razer Montaño

Departamento de Informática,
Federal University of Paraná,

Curitiba, Brazil

Luis Künzle
Fabiano Silva

CPGEI,
CEFET-PR,

Curitiba, Brazil

Introduction
In this paper we propose a Petri net based representation for
planning problems. The motivation for this is that Petri nets
are a formal tool useful to model and analyse domains in-
volving true parallelism, concurrency, conflicts, and causal
relations which are beyond the scope of classical planning.

In (Silva, Castilho, & Künzle 2000) we presented a way
to translate the plan graph into an acyclic Petri net. This
would already serve as a basis for our desired analysis on
non-classical planning. However, that translation kept the
same redundancies of the plan graph. It just translate propo-
sitions and actions in the plan graph to places and transitions
in the Petri net.

In this first translation we didn’t explore the dynamics of
Petri nets. In the approach proposed in this paper we show
the construction of the Petri net directly from the description
of the problem. In this new structure, we give another view
about the mutex relation and maintenance actions. We give
details about this in section .

In Petri nets, a planning problem corresponds to a
submarking reachability problem. This is known to be
EXPspace-hard (Lipton 1976; Esparza & Nielsen 1994) in
the general case. Fortunately, our net is an acyclic one and
in this case we are in the NP-complete case (Stewart 1995),
which is what we expected. Anyway, to solve the reachabil-
ity problem is not straightforward and due to lack of space
we refer the reader to (Rauhamaa 1990). In this paper we
focus on the structure of our model.

In the next section we recall the basis of Petri nets. Then
we present the construction of a Petri net directly from the
description of the planning problem. Finally we present
some concluding remarks.

Petri Nets, Reachability and the Petriplan
algorithm

A Petri net (Murata 1989) is a 4-tuple N =
(P, T,Pre,Post) where P = {p1, p2, . . . , pn} is a fi-
nite set of places, T = {t1, t2, . . . , tm} is a finite set of
transitions, Pre : P × T → N is the input incidence
function and Post : P × T → N is the output incidence

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

function. A Petri net with a given initial marking is denoted
by (N,M0) where M0 : P → N is the initial marking.

The Petri net dynamics is given by firing enabled tran-
sitions, whose occurrence corresponds to a state change of
the system modelled by the net. A transition t of a Petri
net N is enabled for a marking M iff M ≥ Pre(., t). This
enabling condition, expressed under the form of an inequal-
ity between two vectors, is equivalent to ∀p ∈ P, M(p) ≥
Pre(p, t).

Only enabled transitions can be fired. If M is a marking
of N enabling a transition t, and M ′ the marking derived
by the firing of t from M , then M ′ = M + Post(., t) −
Pre(., t). Note that the firing of a transition t from a marking

M derives a marking M ′: M
t
→ M ′.

We can generalise this formula to calculate a new mark-
ing after firing a sequence s of transitions. Let us consider a
matrix C = Post − Pre, called Petri net incidence matrix,
and a vector s, called characteristic vector of a firing se-
quence s (s : T → N, such that s(t) is the number of times
that transition t appears in the sequence s). The number of
transitions in T defines the dimension of the vector s. Then,
firing a sequence s of transitions from M , a new marking
Mg is calculated by the fundamental equation of N :

Mg = M + C.s. (1)

We can use the fundamental equation to determine a vec-
tor s for a given net N and two markings M and Mg . The
satisfying solution must be a nonnegative integer vector, and
it is only a necessary condition for Mg to be reachable from
M . This condition becomes necessary and sufficient for
acyclic Petri nets, a subclass of Petri nets that have no di-
rected circuits (Murata 1989).

The reachability relation between markings of a firing
transition can be extended, by transitivity, to the reacha-
bility of the firings of a transition sequence. Thus, in a
Petri net N , it is said that the marking Mg is reachable
from the marking M iff there exists a sequence of transi-
tions s such that: M

s
→ Mg . The reachability set of a

marked Petri net (N,M0) is the set R(N,M0) such that
(M ∈ R(N,M0)) ⇔ (∃sM0

s
→ M).

We call the reachability problem for Petri nets the prob-
lem of determining if a given marking Mg is reachable from
M0. The sub-marking reachability problem for a given

edelkamp
 27

sub-marking Ms consists of determining if exists a mark-
ing Mg that is reachable from M0 and Ms ⊂ Mg , where
Mg ∈ R(N,M0). In (Rauhamaa 1990) we have several
different techniques to solve it.

The Petriplan algorithm consists in two steps: first, the
construction of a Petri net from the description of the plan-
ning problem; then find a sequence of transitions firings that
solves the reachability problem. In the next sections we ex-
plore the construction of the net directly from the description
of the problem, taking profit of the representational power of
a Petri net.

The plan net
In this section we modify the structure of our Petri net de-
fined in (Silva, Castilho, & Künzle 2000) and define what
we call the plan net, which is simply a Petri net obtained
directly from the description of the problem exploring the
representational power of Petri nets. We need however to
explain two important points before showing the construc-
tion technique.

First of all, let’s consider the representation of proposi-
tions. In the beginning of the construction of the net a place
represents a proposition. During the process when it is found
that a proposition is a precondition of more then one action,
we just copy the place. It may happen that a place will be
copied several times.

Now let’s consider the possible inconsistencies between
actions. In the plan graph this means to look for the mutex
relation between action in some layer. When this is found
the actions are marked as mutex, i.e., these two actions can-
not be executed at the same time. This forces the copy of
the entire layer to a new one using maintenance actions. In a
certain sense the conflict is not completely solved, just in the
“search for a solution” phase the two actions are ordered.

In our case the proposal is to have no maintenance actions.
What we do is to refine the mutex relation. We relate two
actions in five different ways, not only two (mutex and not
mutex). Let x and y be two actions. We define the following:

• (x q y): they are totally independent, that is, they may
happen even in parallel. This is the “not mutex” in the
plan graph sense. It may be possible to have only x, only
y, x followed (or preceded) by y and x and y in parallel;

• (x / y): x has as effect the negation of some effect of
y. This way x and y may occur in any order, but not in
parallel;

• (x ⊀ y): x has as effect the negation of some precondition
of y. So x could not occur before or in parallel with y;

• (x � y): y has as effect the negation of some precondition
of x. So y could not occur before or in parallel with x;

• (x � y): x ⊀ y and x � y. The given actions may occur
just each one alone or with a third action between them.

This is an important difference between the graph and the
plan net. The price for this is that we need to find out the
correct kind of relation between two actions. The algorithm
is based on a graph structure called graph of static inconsis-
tencies, which is a graph whose nodes are actions and there

PSfrag
replacem

ents

m(c, a, b)

mtt(c, a)

mft(b, c)

⊀

�

�

Figure 1: Graph of static inconsistencies for the first layer.

is an edge of type t linking x and y if x is related with y with
respect with relation t. Observe that (x � y) is the stronger
case. The process of construction of this graph has the same
computational cost of finding all the static mutex relations
in the plan graph.

Now we are in condition to show the algorithm to con-
struct the plan net. This process follows the idea of the con-
struction of the plan graph. It begins with marked places
representing the initial state.

We enter then in a loop looking for the places represent-
ing the final state. This loop has three phases, which are
described in details below.

Phase 1: we add transitions representing all possible ac-
tions whose preconditions are already in the net. If some
place is already a precondition of some other transition cre-
ate a copy of this place. This copy is not needed only in the
case whether the consequence of the action is the negation of
that precondition been copied. This copy will be linked with
the transition been added. This phase will define a layer, i.e.,
all possible actions that may be fired simultaneously.

Phase 2: we construct the graph of static inconsistencies
for the transitions in the last generated layer (figure 1). It is
constructed as we explained above. This graph will guide
the construction of the control structure of the net. This is a
Petri net containing all possible sequences of non inconsis-
tent actions present in the last generated layer. The places
here are not associated with propositions, they are just con-
trol places. We merge this structure in the net. The merge
process is to include copies of the actions appearing in the
control structure that are not in the original net. But we do
not need to copy the places representing preconditions of
the actions been copied. For example in figure 2 the ac-
tion mft(b, c)0 was copied to mft(b, c)1, but both share the
same preconditions f(b)1, f(c)0 and ot(b)0. At the end of
this phase we have a Petri net containing all possible ways
of executing the actions without any conflict in this layer.
Figure 2 shows the resulting net.

We must say that the notion of layer in the Petri net is dif-
ferent from that in the plan graph. Here, a layer may contain
actions happening in more than one instant of time, whereas
in the plan graph each layer is associated with only one in-
stant of time. Due to the process of construction based on
the graph of static inconsistencies we can warrant that there
is no static inconsistent sequences of actions in each branch
of the net in this layer.

Phase 3: if the net contains places representing the goal
state we enter phase 3, i.e., we will look for a solution. That

edelkamp
 28

edelkamp

PSfrag
replacem

ents

•

f(a)0

f
(c)

0

f(c)1 f(c)2 f(c)0o(c, a)0

o(c, b)0 o(b, c)0

f(b)0 f(b)1 ot(b)0 ot(a)0

ot(c)0

m(c, a, b)0 mtt(c, a)0 mft(b, c)0

mft(b, c)1

Figure 2: The first layer for Sussman anomaly with control
structure.

means to find a flow in the net which puts tokens in the
places representing the goal state. This is the reachability
problem in Petri nets. As said, we refer to (Rauhamaa 1990)
for the complexity of this problem. If such a flow exists, then
it is a (possibly parallel) plan. In the other case, we return to
phase 1. In our example there is no such a flow. So we must
return one more time to phase 1 and 2. For lack of space we
will not show the figures. Now in phase 3 the flow exists.
Figure 3 the final Petri net for the Sussman anomaly. This
net is a simplified version containing just the paths which
reach some goal state place.

PSfrag
replacem

ents

f(a)0

f
(c)

0

f(c)1 f(c)2f(c)3 f(c)0o(c, a)0

o(c, b)0 o(b, c)0

o(a, b)0

f(b)0 f(b)1

f(b)2

ot(b)0ot(a)0

ot(c)0

m(c, a, b)0 mtt(c, a)0

mtt(c, b)0

mtt(c, b)1

mft(b, c)0

mft(b, c)1

mft(a, b)0

mft(a, b)1

•

•

Figure 3: Final Petri net for the Sussman anomaly.

Discussion
Relations between Petri nets and planning problems were
former investigated by (Murata & Nelson 1991) and (Mieller
& Fabiani 2000). The first use a general cyclic predicate-
transition Petri net. The problem is that the necessary and
sufficient condition of equation 1 is broken, and the only
way to solve the reachability problem is to use the reach-
ability graph, which leads to an enumerative search for a
solution.

The second approach defines a cyclic coloured Petri net,

in which each place corresponds to a logical predicate de-
scribing actions preconditions or effects. The operators in-
stantiation is made by token colours. The theoretical model
obtained for the resulting planning problem is in fact more
compact than ours, but it presents the same problem of ex-
haustive search, as in (Murata & Nelson 1991).

In our approach, however, we have a simpler acyclic
place-transition Petri net, with necessary and sufficient con-
ditions to use the equation 1 to find a solution to the plan-
ning problem. This paper modifies our first presentation of
the Petriplan algorithm (Silva, Castilho, & Künzle 2000) by
taking profit of the dynamics of the Petri net thus reducing
the structure.

Finally, the method proposed in this paper permits to con-
struct a Petri net representation of the planning problem. As
others methods, we can find a solution to the planning prob-
lem, in our case using reachability algorithms. The classical
way is to start an exhaustive search, just as Graphplan does.
However, as we have an acyclic Petri net, the matrix rep-
resentation of the fundamental equation can be viewed as a
constraint satisfaction problem, which can be solved using
several methods, as integer programming, SAT, among oth-
ers.

References
Esparza, J., and Nielsen, M. 1994. Decidability issues for
Petri nets - a survey. Bulletin of the European Association
for Theoretical Computer Science 52:245–262.
Lipton, R. J. 1976. The reachability problem requires expo-
nential space. Technical report, Dept of Computer Science,
Yale University. research report 62.
Mieller, Y., and Fabiani, P. 2000. Planning with Petri nets.
In Proc. of RJCIA-2000.
Murata, T., and Nelson, P. 1991. A predicate-transition net
model for multiple agent planning. Information Sciences
57-58:361–384.
Murata, T. 1989. Petri nets: Properties, analysis and appli-
cations. Proceedings of the IEEE 77(4):541–580.
Rauhamaa, M. 1990. A comparative study of methods for
efficent reachability analysis. Technical Report A 14, Digi-
tal Systems Laboratory, Helsinki University of Technology.
http://citeseer.nj.nec.com/245545.html.
Silva, F.; Castilho, M.; and Künzle, L. 2000. Petriplan: a
new algorithm for plan generation (preliminary report). In
Proc. of IBERAMIA/SBIA-2000, 86–95. Springer-Verlag.
Stewart, I. A. 1995. Reachability in some classes of acyclic
Petri nets. Fundamenta Informaticae 23(1).

edelkamp
29

SGPlan: Subgoal Partitioning and Resolution in Planning∗

Yixin Chen, Chih-Wei Hsu, and Benjamin W. Wah
Department of Electrical and Computer Engineering

and the Coordinated Science Laboratory
University of Illinois, Urbana-Champaign

Urbana, IL 61801, USA
{chen,chsu,wah}@manip.crhc.uiuc.edu

Abstract

We have developed SGPlan, a planner that com-
petes in the Fourth International Planning Com-
petition. SGPlan partitions a large planning prob-
lem into subproblems, each with its own subgoal,
and resolves inconsistent solutions of subgoals us-
ing our extended saddle-point condition. Subgoal
partitioning is effective because each partitioned
subproblem involves a substantially smaller search
space than that of the original problem. We have
developed methods for the detection of reason-
able orders among subgoals, an intermediate goal-
agenda analysis to hierarchically decompose each
subproblem, a search-space-reduction algorithm to
eliminate irrelevant actions in subproblems, and
a strategy to call the best planner to solve each
bottom-level subproblem. Currently, SGPlan sup-
ports PDDL2.1 and derived predicates, and algo-
rithms for supporting time initiated facts and ADL
are under development.

OVERALL ARCHITECTURE
By formulating a subproblem in such a way that each
has one goal state, SGPlan partitions a planning prob-
lem into subproblems, orders the subproblems accord-
ing to a sequential resolution of its subgoals, and finds
a feasible plan for each goal fact. Using the ex-
tended saddle-point condition and constrained search,
new constraints are enforced to ensure that facts and as-
signments in a later subgoal are consistent with those of
earlier subgoals.

Figure 1 shows the architecture of our planner. In
the global level, we select a suitable order for the plan-
ner to solve the partitioned subgoals, introduce artifi-
cial global constraints to enforce that the solution of one
subgoal solved later does not invalidate that of an earlier
subgoal, and resolve violated global constraints using
the theory of extended saddle points. In the local level,
we perform a hierarchical decomposition of first-level

∗Research supported by the National Aeronautics and
Space Administration Grant NCC 2-1230 the National Sci-
ence Foundation Grant ITR 03-12084.
Copyright c© 2004, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

Metric-FF

Techniques
Studied

G
lo

ba
l-L

ev
el

P
la

nn
in

g
S

ub
go

al
-L

ev
el

P
la

nn
in

g

Lagrange Multiplier
Evaluation

Plan

Global Constraints on Subgoals

Update Strategy

LPG

PN,1 PN,CN
P1,C1

P1,1

GNG2G1

Basic

Reduction
Space
Search

Decomposition
IGA

Subgoal
Ordering

Resolution
Constraint

Global

Planner
Selection

Figure 1:The architecture of SGPlan.

subgoals, prune irrelevant facts and actions before call-
ing a basic planner, and choose a suitable basic planner
for solving the second-level subproblem.

Figure 2 presents the pseudo code of our planner.
Based on the subgoals identified, we partition the prob-
lem into N subproblemsG1, · · · , GN , one for each
subgoal, and order the subproblems appropriately. For
Gi, we perform an intermediate-goal-agenda (IGA)
analysis to decompose it intoCi smaller subproblems
Pi,1, · · · , Pi,Ci

. For each second-level subproblem,
we perform subspace-reduction analysis to reduce its
search space and choose a suitable planner (calledbasic
planner) to solve it. Finally, we evaluate the composed
plan and update the Lagrange multipliers.

Our approach is different from incremental plan-
ning (Koehler & Hoffmann 2000) that uses a goal
agenda. In incremental planning, a planner maintains a
set of target facts, adds goal states incrementally into the
target set, and extends the solution by using the new tar-
get set. This means that a goal state will always be sat-
isfied once it is satisfied. However, it may be more ex-
pensive to solve subsequent problems, since the search
space increases as more goal states are added. More-
over, it is difficult to tell which goals should be satisfied
before others. In contrast, SGPlan always involves only

edelkamp
30

1. procedure SGPlan
2. compute the partial orders among subgoals;
3. generate an initial ordered list of subgoals;
4. setiter ←− 0;
5. repeat
6. for each goal fact in the subgoal list
7. find the intermediate goal facts;
8. generate an IGA agenda;
9. for each entry in the IGA agenda
10. call search space reduction procedure and

eliminate irrelevant actions;
11. call basic planner to solve the subproblem;
12. end for
13. end for
14. if (planz found is feasible)
15. evaluate the solution plan;
16. decrease some Lagrange multipliers;
17. else increase Lagrange multipliersγ on unsatisfied

global constraints;
18. iter ← iter + 1;
19. if (iter % τ == 0) dynamically re-order the subgoals;
20. until no change onz andγ in an iteration;
21.end procedure

Figure 2:The pseudo code of SGPlan.

one goal fact in a subproblem. Therefore, the search
space of the subproblems is not increasing, and irrele-
vant actions in each subproblem can be pruned.

GLOBAL-LEVEL PLANNING
Subgoal Ordering and Global Constraints
When dependent subgoals are evaluated sequentially, it
is possible that a subgoal evaluated later may invalidate
the results of a subgoal evaluated earlier, and the ear-
lier subgoal has to be re-evaluated. Although such con-
flicts may be unavoidable, appropriately ordered sub-
goals can significantly reduce the occurrences of such
conflicts. Intuitively, difficult subgoals should be re-
solved before easier ones.

It is non-trivial to find an optimal order that mini-
mizes the conflicts among subgoals. In fact, it may be
more computationally expensive to find the best order
than solving the problem itself. In SGPlan, we have de-
veloped three heuristics for partial ordering of subgoals
that can be computed efficiently (Step 2 of SGPlan).

The first level is calledreasonable ordering proposed
in (Koehler & Hoffmann 2000). Suppose goal factA is
ordered beforeB in the subgoal list, but after we get a
plan that achievesA, we cannot achieveB without in-
validatingA first. Then the search for achievingA first
is wasted, and it is more efficient to achieveB before
A. We use an algorithm in FF2.2 (Koehler & Hoffmann
2000) to find such reasonable orders.

For goal pairs not ordered by reasonable ordering,
we apply a second level of ordering calledirrelevance
ordering. Based on backward relevance analysis (dis-
cussed in the next section), we compute the number of
irrelevant actions of each goal fact, and orderA before
B if A has less irrelevant actions. The idea is to resolve

more difficult subgoals, with less irrelevant actions.
For goal pairs not ordered by the first two levels, we

apply the third level of ordering calledprecondition or-
dering. Specifically, forA andB with the same number
of irrelevant actions that cannot be ordered by reason-
able ordering, we orderA beforeB if np(A) > np(B).
Here,np(A) is the minimum number of preconditions
of those supporting actions:

np(A) = min
a∈S(A)

npre(a), (1)

whereS(A) is the set of all actions that support goal fact
A, andnpre is the number of preconditions of actiona.
Again, the idea is that more difficult goals, with larger
np, should be resolved first.

For pairs of subgoals that are not involved in any of
the three levels or ordering, we randomly order them.
At the beginning of a search, we randomly generate a
total ordering of the goal facts that satisfy the three lev-
els of partial orders (Step 3) and periodically generate
new total orders during the search (Step 19).

To identify conflicts among solutions of subgoals, we
define a global constraint so that the solution plan of
a subgoal will not invalidate the goal fact of another
subgoal. Each global constraint in SGPlan is a binary
constraint that indicates whether conflicts exist or not.

Resolution of Global Constraints
The planning problems studied in SGPlan are defined
in mixed space with nonlinear objective and constraints
that may be procedural and not in closed form. SGPlan
implements a search to find extended saddle points in
the Lagrangian space of a problem (Chen & Wah 2003;
Wah & Chen 2003). The extended saddle-point condi-
tion (ESPC) states that solution points in mixed space
that are local optima of the objective and that satisfy
all the constraints must satisfy ESPC. The condition is
defined on a Lagrangian function that consists of the
sum of the objective and the constraints weighted by
Lagrange multipliers, where an extended saddle point is
a point that is a local minimum of Lagrangian function
with respect to the original variable space and a local
maximum of the function with respect to the Lagrange-
multiplier space.

An important property of ESPC is that the condition
is true for all Lagrange multipliers larger than a mini-
mum threshold. Hence, finding points that satisfy ESPC
can be implemented iteratively, with an inner loop that
looks for local minimum of the Lagrangian function,
and an outer loop that looks for any Lagrange multipli-
ers larger than the critical threshold. The property also
allows a search looking for extended saddle points to
be partitioned into multiple searches, each looking for
a local extended saddle point for a partitioned problem
(Steps 6-12 of Figure 2), and an outer loop that resolves
the global constraints across the subproblems (Step 17).

A direct implementation of ESPC in a search algo-
rithm may get stuck in an infeasible region when the
objective is too small or when the Lagrange multipliers

edelkamp
31

and/or constraint violations are too large. To address
this issue, SGPlan performs periodic decreases of La-
grange multipliers in the Lagrangian space in the outer
loop, in addition to ascents (Step 16).

SUBGOAL-LEVEL PLANNING

Subgoal-Level Decomposition

Sometimes the subproblems after first-level partitioning
by subgoals are still too large to be solved quickly. An
obvious approach to reduce this complexity is to further
partition the subproblem into smaller ones.

Given subgoalG after first-level partitioning, we pro-
pose to identify some “hidden” intermediate second-
level subgoals (or facts) that must be true in any plan
that achievesG from a given initial state (Steps 7 and
8). These facts allow us to construct an intermediate
goal agenda (IGA), which is an ordered list of agenda
entries, each containing a set of intermediate facts.

From a fixed initial stateS, we define the following
relationship between two factsA andB. A is an in-
termediate goal beforeB, denoted asA �IGA B, if
the planning graph starting fromS cannot achieveB
without achievingA first. We construct the planning
graph similar to that in Graphplan, with the following
two changes: a) we do not compute any mutual exclu-
sion relations; b) we forbid the insertion ofA into the
planning graph at any level (thereby also forbidding the
insertion of any actions havingA as a precondition). If
B is not in the planning graph after the construction of
the graph, then we haveA �IGA B.

Based on the intermediate facts, we detect the�IGA

orders among them and construct a directed graph
showing their partial orders. We then identify an agenda
of sets of facts that must be true in any plan ofG.

SGPlan determines dynamically whether partitioning
should be further carried out, depending on whether a
subgoalG is easy enough to be resolved quickly us-
ing the IGA agenda. If subgoalG is to be partitioned,
SGPlan further uses symmetry-group detection to see if
a path can be constructed from the current facts to the
subgoal:f0 → f1 → · · · → G, wheref0, f1, · · · are
all in the same symmetry group as that ofG. It then
partitions the problem of achievingG from f0 into N
subproblems:f0 → f1, f1 → f2, . . . , fN−1 → G.

Our approach is different from existing approaches
for finding intermediate facts (Koehler & Hoffmann
2000) that expand a search space from the goal state and
find some indispensable pre-conditioning facts. Since
the initial state is not specified, there is no way to tell
to what depth the backward expansion should stop. In
contrast, our method considers both the initial and the
goal states in determining whether an intermediate fact
is critical and always stops in finite levels of expansions.
In addition, we detect the partial orders among these
facts and form an agenda to avoid unachievable inter-
mediate states, which could occur in previous methods.

Search-Space Reduction
After partitioning a subproblem into easier second-level
subproblems, we can often eliminate many irrelevant
actions in their search space before solving them. Such
a reduction is generally not applicable to planning prob-
lems that are not partitioned because in most cases all
actions in their search space are relevant.

We have designed a polynomial-timebackward rel-
evance analysis to exclude some irrelevant actions be-
fore applying any planner to solve a subproblem (Step
10). Given a subproblem to be solved, we maintain an
open list of unsupported facts, aclose list of relevant
facts, and arelevance list of relevant actions. In the be-
ginning, the open list contains only the subgoal facts of
the subproblem, and the relevance list is empty. In each
iteration, for each fact in the open list, we find all the
actions supporting that fact and not already in the rele-
vance list. We then add these actions to the relevance
list, and add the action preconditions that are not in the
close list to the open list. We move a fact from the open
list to the close list when it is processed. The analy-
sis ends when the open list is empty. At that point, the
relevance list will contain all possible relevant actions,
while excluding those irrelevant actions.

Since partitioned subproblems usually have similar
structures, we learn suitable rules for subproblem solv-
ing during a search. After a number of trial-and-error,
SGPlan records some suitable heuristics and parameters
that lead to the successful resolution of subgoals and use
them in solving other subproblems.

Basic-Planner Selection
Our current implementation of SGPlan uses a modi-
fied Metric-FF planner for basic planning and only in-
vokes LPG when the modified planner fails. We have
developed new algorithms and modified heuristic func-
tions in the enhanced Metric-FF to fully support derived
predicates, temporal planning, and time initiated facts
(still under development).

References
Chen, Y. X., and Wah, B. W. 2003. Automated planning and
scheduling using calculus of variations in discrete space.In
Proc. Int’l Conf. on Automated Planning and Scheduling, 2–
11.

Koehler, J., and Hoffmann, J. 2000. On reasonable and
forced goal ordering and their use in an agenda-driven plan-
ning algorithm.J. of AI Research 12:339–386.

Wah, B. W., and Chen, Y. X. 2003. Partitioning of tem-
poral planning problems in mixed space using the theory of
extended saddle points. InProc. IEEE Int’l Conf. on Tools
with Artificial Intelligence, 266–273.

edelkamp
32

Planning in PDDL2.2 Domains with LPG-TD

Alfonso Gerevini Alessandro Saetti Ivan Serina Paolo Toninelli
Dipartimento di Elettronica per l’Automazione

Università degli Studi di Brescia
Via Branze 38, 25123 Brescia, Italy�
gerevini,saetti,serina � @ing.unibs.it

Introduction

LPG-TD is an extension of the LPG planner (Gerevini, Saetti,
& Serina 2003; 2004) that can handle most of the features of
PDDL2.2 (Edelkamp & Hoffmann 2003), the standard plan-
ning language of the 4th International Planning Competi-
tion (IPC-4).1 In particular, LPG-TD is an incremental fully-
automated planner generating plans for problems in domains
involving:

�
STRIPS actions;

� durative actions;
� actions and goals involving numerical expressions;
� operators with universally quantified effects;
� operators with existentially quantified preconditions;
� operators with disjunctive preconditions;
� operators with implicative preconditions;
� timed initial literals (deterministic unconditional exoge-

nous events);
� predicates derived by domain axioms;
� maximization or minimization of complex plan metrics.

Like the previous version of LPG, the new version is based
on a stochastic local search in the space of particular “action
graphs” derived from the planning problem specification. In
LPG-TD, this graph representation has been extended to deal
with the new features of PDDL2.2, as well to improve the
management of durative actions and of numerical expres-
sions (already supported by PDDL2.1 (Fox & Long 2003)).

In the following, we briefly describe the main novelties of
LPG-TD, which include some new techniques for planning
problems involving timed initial literals and derived predi-
cates, and some general improvements of all phases of the
planner (pre-processing, search and post-processing).

Copyright c
�

2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1The “TD” extension in the name of the planner is an abbre-
viation of “Timed initial literals and Derived predicates”, the two
main new features of PDDL2.2.

Handling Timed Initial Literals
Timed initial literals represent facts (predicates instantiated
with constants) that become true or false at certain time
points, independently of the actions in the plan. They cor-
respond to particular exogenous events known by the plan-
ner (Edelkamp & Hoffmann 2003). A fact can become true
or false several times through different timed initial literals,
defining a set of disjoint temporal windows where the fact
holds. For example, the first problem of the Satellite do-
main in IPC-4 has two timed initial literals

(at139.00(visibleantenna0satellite0)),
(at219.04(not(visibleantenna0satellite0)))

defining a single temporal window for the fact

(visible antenna0 satellite0).

According to PDDL2.2, the fact involved by a timed initial
literal can appear in the preconditions of an action, while
it can never appear in its effects. We call such precondi-
tions timed preconditions, and we represent them as partic-
ular nodes of the action graph. If a plan action � has a timed
precondition � of type “overall” involving a fact � , � is sat-
isfied when the interval identified by the start time and the
end time of � is contained into at least one temporal window
associated with � . Similar conditions can be defined for the
other possible types of preconditions in a durative action.

Essentially, an unsatisfied timed precondition involving a
fact � in � is treated by either (i) removing � from the plan
under construction, or making some changes to the plan that
make the execution of � compatible with a temporal window
associated with � , i.e., by (ii) appropriately postponing the
start time of � , or (iii) removing one or more actions that
permit to decrease the start time of � .

In the new version of LPG, the graph-based plan represen-
tation, the pre-processing phase (reachability analysis and
computation of the “mutex relations”), and the search tech-
niques have been extended to perform such plan modifica-
tions when dealing with unsatisfied timed preconditions.

Handling Derived Predicates
Derived predicates are predicates that can not be achieved
directly by the domain actions. A derived predicate �	�
�� is
true at a certain time
 during the execution of a plan iff it

edelkamp
33

can be derived from the facts that are true at time
 through
a set of rules specified in the domain formalization. Each of
these rules is of the form

if � �
�� then �	�
 � ,
where
 is a tuple of variables, and � �
�� a logical formula
(a precise syntactic and semantic definition of domain rule
is given in (Edelkamp & Hoffmann 2003)).

A typical example of derived predicate in the
Blocksworld domain is above, which can be derived
by using the following rule:

if ����� �
��	� ��

��� ��������� �
���� ��� ��������� �����	� ���
then � ��������� �
���� � .

In PDDL2.2, a derived predicate can be a precondition of
an action or a goal of the planning problem, which we call
derived precondition (we treat problem goals as precondi-
tions of a special final action). A derived precondition of an
action � is satisfied if it is implied by the domain rules and
the facts that are true when � is executed.

Essentially, an unsatisfied derived precondition � in � is
treated by either (i) removing � from the current plan, or (ii)
adding one or more actions that modify the set of the facts
that are true when the action can be executed in the plan,
so that � becomes true by applying of one or more domain
rules. For example, consider a simple Blocksworld prob-
lem where the initial state is

(on-table a), (on-table b), (on c b)

and the goal is (above a b). When the domain rule of the
previous example is available, it is easy to see that the goal
can be achieved by just adding to the (initially empty) plan
the action stack(a,c) making (on a c) true.

In the new version of LPG, the graph-based plan represen-
tation, the pre-processing phase (reachability analysis and
computation of the mutex relations), and the search tech-
niques have been extended to take possible domain rules into
account.

Further Extensions
In addition to the treatment of timed initial literals and de-
rived predicated, the new version of our planner includes
several revisions and extensions with respect to the version
that took part in the previous competition. Such changes
concern the pre-processing phase, the search phase, and
post-processing phase of the planner. In the following, we
give a list of them.

Pre-processing
� The algorithm for computing mutex relations has been

revised to make it faster than the original algorithm de-
scribed in (Gerevini, Saetti, & Serina 2003).

� Some actions are automatically identified as “useless ac-
tions”, and they can be pruned away at parsing time or
they can be neglected during search.

� The computation of the reachability information for nu-
merical domains has been improved to derive more accu-

rate information that are exploited by the heuristic func-
tion evaluating the search neighborhood.

Search
� We have developed new heuristics for evaluating the

search neighborhood specialized for the different variants
of a planning domain supported by PDDL2.2.

� The basic local search strategy (Walkplan) has been ex-
tended with a “tabu list” helping to escape from local min-
ima.

Post-processing
� We have developed a technique for increasing the degree

of parallelism in the plans generated by LPG for domains
with durative actions and numerical expressions. This is
done by an algorithm that, starting from the set of the ac-
tions forming the plan and their ordering constraints iden-
tified by the planner, tries to reduce the plan makespan.

Finally, at the time of writing, the development of LPG-
TD is still in progress. In particular, we are experimenting
a pre-processing technique for the automatic ordering of the
problem goals, and we are developing an extension of the
representation for handling actions involving conditional ef-
fects.

Acknowledgments
We would like to thank all previous members of the LPG
team and particularly Alberto Bettini, Marco Lazzaroni, Ser-
gio Spinoni.

References
Edelkamp, S, Hoffmann, J. 2003. PDDL2.2: The Lan-
guage for the Classical Part of the 4th International Plan-
ning Competition Technical Report N. 194, Albert Lud-
wigs Universität Institüt für Informatik, Freiburg, Ger-
many.
Fox, M., and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. JAIR
20:61–124.
Gerevini, A., Saetti, A., and Serina, I. Planning through
Stochastic Local Search and Temporal Action Graphs in
LPG. 2003. JAIR 20:239–290.
Gerevini, A., Saetti, A., and Serina, I. 2004. An Empirical
Analysis of Some Heuristic Features for Local Search in
LPG . In Proceedings of ICAPS-04.

edelkamp
 34

The Workings of CRIKEY - a Temporal Metric Planner

Keith Halsey
University of Strathclyde

Glasgow, UK
keith.halsey@cis.strath.ac.uk

Abstract

Described here is the temporal metric planner CRIKEY
as it competed in the International Planning Compet-
ition 2004. CRIKEY separates out the planning and
scheduling parts of temporal planning problems, and
detects where these two sub-problems are too tightly
coupled to be separated completely. In these cases it
solves the sub-problems together. The domains of the
competition are looked at to see where these interac-
tions occur.

Introduction

CRIKEY is a forward heuristic search planner based closely
on MetricFF (Hoffmann 2002) and implemented in Java1.4.
In a similar fashion to MIPS (Edlekamp & Helmert 2000), it
separates the planning and scheduling where it can, however
it solves the two problems together where such a relaxation
will fail. It is this combining of the problems only where
necessary and the reasoning associated with it that distin-
guishes it from other similar planners (and where the focus
of the research lies). It can detect these cases in the domain
and act accordingly. I am only interested in where the inter-
action and separation of sub-problems will prevent a solu-
tion being found, and not where this separation leads to an
inferior quality of solution. CRIKEY is complete and sound
but not optimal (either in time or the specified metric). It
will however make an attempt to minimise the number of
actions in a plan.

Capabilities

CRIKEY was written to work with the PDDL2.1 (Fox
& Long 2001) models of metrics and time. It can deal
with both temporal aspects (i.e. durative actions) and
metrics resources. More formally, it can parse and plan
with PDDL domains with the:typing , :fluents , and
:durative-actions requirements. Unfortunately, cur-
rently it can not make use of any of the ADL constructs or
the new language features (namely, timed initial literals or
derived predicates).

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Architecture
The architecture of CRIKEY is shown in Figure 1. It
first looks at the domain for where planning and schedul-
ing could potentially interact. Then it performs forward
heuristic search using a relaxed plan graph. The mini-
scheduler makes sure that a schedulable plan is passed into
the scheduling phase. This consists of lifting a partial order
plan from the totally ordered plan, and then turning this into
a temporal plan. Crucially, there is no feedback from the
scheduling phase to the planning phase, therefore the plan-
ner must produce a plan that the scheduler can schedule.

Technical Details
Planning
CRIKEY finds a plan through forward heuristic search sim-
ilar to FF (Hoffmann & Nebel 2001). During planning, tem-
poral information is ignored. The search strategy is enforced
hill climbing, that is, once a better state is found, search pro-
ceeds from that state without backtracking. Best first search
is used on plateaus, where all neighbouring states are no im-
provement on the current state. If enforced hill climbing
fails, best first search is attempted from the initial state. This
is complete and so theoretically should find a plan.

The heuristic value is the length (number of actions) of a
relaxed plan where the delete effects are ignored. The re-
laxed plan is from the current state to the goal state and is
easily extracted from a relaxed planning graph.

As in FF, only helpful actions are considered in the en-
forced hill climbing. Helpful actions are actions which ap-
pear in the first layer of the relaxed planning graph and are
also in the relaxed plan.

Scheduling
A greedy algorithm (Morenoet al. 2002) works backwards
through the totally ordered plan finding causal links between
the starts and ends of actions to form a partially ordered
plan. Links are either≤ or < (in which case a minimum
value equal to the tolerance value must separate the two end
points). These are put into an STN upon which Floyds-
Warshalls Algorithm is to calculate the actual time of the
actions in the partially ordered plan.

The algorithm must not only look for orderings based on
logical conditions, but also for orderings due to metric con-

edelkamp
 35

SCHEDULING

&%
'$

Total to
Partial Order

Lifter &%
'$

Simple
Temporal
Network

PLANNING

��
��

Mini-
Scheduler &%

'$
Forward
Search &%

'$
Relaxed

Plan
Graph

&%
'$
Domain
Analysis

?

?

?

-

�

-

�

- �

?

Actions

STN
Consistency

Temporal Domain

Classical
Problem

Totally
Ordered Plan

Extracted
Temporal

Information

Current
State

Heuristic
Distance &

Helpful Actions

Partial
Ordered

Plan

Temporal Plan

Figure 1: Architecture Overview of CRIKEY

straints. For a> or≥ resource constraint, just enough pro-
ducers of that resource are ordered before it, assuming that
all consumers that preceed it in the totally ordered plan, oc-
cur before it in the partially ordered plan. The same is true
for < or≤ conditions, apart from the roles of consumer and
producers are reversed. Whilst this is conservative, it must
be sound as the totally order plan is correct (at worst, the
partial order will be the same as the total order).

The next section details how it is impossible to produce
an unschedulable plan.

Interactions

In cases where the planning and scheduling interact, precau-
tions must be made to ensure that a plan is not produced
which is unschedulable. This can happen where the actions
musthappen in parallel (as opposed to the more common
case where actionscanhappen in parallel if they do not in-
terfere). That is to say, one or more actions (called “con-
tent actions”) must happen whilst another (the “envelope ac-
tion”) is executing. If there is not enough time to execute the
contents during the envelope, then an unschedulable plan is
produced.

These cases are detected in advance by looking for “po-
tential envelopes” - actions which allow other actions only

to happen during their duration. These happen where:
(endcond \ startadd 6= ∅ ∧ startadd \ endcond 6= ∅)

∨startdel ∩ endcond 6= ∅
∨addstart ∩ delend 6= ∅

We shall name three states,s1, the state immediately be-
fore the start of the action,s2, the state immediately after
the start, ands3 the state immediately after the end of the
action. An action applicable ins2 and not ins1 must have
been achieved by the at start add effects (since there are no
negative conditions, it could not have been achieved by an
at start delete effect). Taking it further, there are no actions
that could be applied ins2 and not ins3 which could not
have been applied ins1, apart from those achieved by the
at start add effects and then deleted by the at end delete ef-
fects. Alternatively, an action could be achieved by the start
effect, and the effects of this action needed to achieve the
end conditions. They are called potential envelopes since (at
the moment) there is no effort to find out if there are any
content actions that must go in these envelopes.

As stated, where there are potential envelopes, there is the
potential to produce an unschedulable plan. To avoid this,
envelope action are split into two separate actions, a start
action containing the start conditions and effects, and an end
action containing the end conditions and effects. Invariants
become conditions of the end action, and, if not achieved by
the start effects, also of the start action. An end action cannot
be applied until its corresponding start action is in the plan,
and a plan is not valid until all the start actions in the plan
also have their corresponding end actions in the plan.

On putting a start action into the plan, a mini-scheduler
is associated with this action. This mini-scheduler consists
of a Simple Temporal Network, a set of content actions (ini-
tially empty) and a set of orderings between these actions.
The mini-schedulers use the same algorithms as the main
scheduling part of CRIKEY. Any (content) actions which
are now considered, must be checked against this mini-
scheduler to ensure that if they must go in the envelope,
the STN is consistent (that is to say that there is enough
time to execute the action). If not, then the action is not
considered applicable, and that branch is removed from the
search space. When the envelope’s end action is chosen, the
mini-scheduler is then discarded. Figure 2 is pseudo-code
for the mini-scheduler. As can be seen, invariants are pro-
tected whilst an envelope’s start has been chosen but not its
end action. No other action may delete these invariants until
that action has completed.

Competition Domains
Unfortunately, none of the domains in the 2004 competition
in their purest form (that is, without the new features com-
piled out) contained any envelopes (i.e. no actionshad to
happen in parallel) and so in all problems the planning and
scheduling were relatively loosely coupled. This means that
CRIKEY could not show off its mini-scheduling capabilities
to cope with these situations. It is hoped that after the com-
petition, the other competing planners will become available
and it will be possible to compare them with CRIKEY on
domains which do contain such situations.

edelkamp
 36

1. CheckAcond are satisfied. If not, return false.
2. CheckAdel do not delete invariants in the list of invari-

ants. If not, return false.
3. If A is a start of an envelope

(a) Create a new mini-scheduler forA and add to list of
mini-schedulers.

(b) AddA’s invariants to the list of invariants.
4. Else If A is an end of an envelope

(a) RemoveA’s mini-scheduler from the list of mini-
scheduler.

(b) RemoveA’s invariants from the list of invariants.
5. For Each envelopeE currently open

(a) Get orderings forA in E.
(b) If no orderings, return true.
(c) Add orderings to the STN.
(d) Return the consistency of the STN.

Figure 2: Algorithm to decide whether an actionA is applic-
able

Envelopes were present in versions of the domains where
timewindows and deadlines had been compiled down from
PDDL2.2 to PDDL2.1. These envelopes are present in the
newly created dummy actions to enforce the constraints and
lasted the length of the plan. As the envelope lasts the length
of the plan, the mini-scheduler for each dummy action is
active throughout the planning process. This is highly in-
efficient and not what the mini-schedulers are designed to
solve. However, it still makes sure that an unschedulable
plan is not passed to the scheduler.

Since there were no domains particular to CRIKEY’s de-
signed purpose and strengths, not much development of
CRIKEY was performed whilst the competition was run-
ning, except to correct bugs in the code and parser. It is
thought that not being able to handle ADL was not such
a disadvantage as CRIKEY would probably have only per-
formed an equivalent compilation internally.

References
Edlekamp, S., and Helmert, M. 2000. On the imple-
mentation of mips. InProceedings from the 4th Artifi-
cial Intelligence Planning and Scheduling (AIPS), Work-
shop on Decision-Theoretic Planning, 18–25. Brekenridge,
Colorado:AAAI-Press.
Fox, M., and Long, D. 2001. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Tech-
nical report, University of Durham, UK.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search.Journal
of Artificial Intelligence Research14:253–302.
Hoffmann, J. 2002. Extending FF to numerical state vari-
ables. InProceedings of the 15th European Conference on
Artificial Intelligence (ECAI-02), 571–575.
Moreno, D.; Oddi, A.; Borrajo, D.; Cesta, A.; and Meziat,
D. 2002. Integrating hybrid reasoners for planning and

scheduling. InProceedings from the 21st UK Planning and
Scheduling Special Interest Group (PlanSIG’02), 179–189.

edelkamp
 37

TP4 ’04 and HSP
��

P@trik Haslum
Linköping University
pahas@ida.liu.se

Abstract

TP4 and HSP
�� are optimal temporal planners, though they as-

sume a semantics for temporal planning problems that differs
somewhat from the PDDL2.1 standard. Both use regression,
and automatically extracted admissible heuristics to inform
search: their only difference is that HSP

�� invests more time
in computing a more accurate heuristic. Two new tricks were
added to the planners to cope with some domains in the 2004
planning competition. The more interesting of those is a two-
stage optimization scheme which speeds up planning in do-
mains with highly uneven action durations.

Introduction
The TP4 and HSP

�� planners find temporal plans for STRIPS
problems with durative actions. The plans found are optimal
w.r.t. makespan, i.e. the total execution time of the plan, and
the planners are also able to ensure that the plan does not
violate certain kinds of resource constraints.

TP4 participated in the 2002 planning competition, where
it may be said to have ended up second-to-last (although it
rightfully deserved the last place)1. The version of TP4 par-
ticipating in the 2004 competition is a reimplementation of
essentially the same planner. The new implementation, hav-
ing been designed to be a flexible experimental platform for
variations of the basic planning algorithm (such as HSP

��)
rather than an efficient implementation of a single algorithm,
is somewhat slower than the earlier version.

This paper focuses on two points: First, the semantics
that TP4/HSP

�� assume for planning problems (which dif-
fers from the PDDL2.1 standard) and second, new tricks that
were added to the planners to address problems encountered
in the competition domains.

The Semantics of Planning Problem
Specifications

Put somewhat pointedly, TP4 does not accept PDDL2.1 in-
put2. For practical purposes it uses the same syntax, but
durative actions and fluents are interpreted in a maner that
differs from the PDDL2.1 specification (Fox & Long 2003).

1This is my interpretation: Such a strict ordering of planners
was not an official result of the competition.

2The same applies to HSP
�� .

Durative Actions
The semantics that TP4 assumes for durative actions are es-
sentially those introduced by Smith and Weld (1999) for
their TGP planner.

An action � has preconditions �	��

����� , positive (added)
and negative (deleted) effects ����������� and �

�������� , which are
all sets of atoms, and a duration ���	����������� . Preconditions
that are not deleted by the action are termed persistent pre-
conditions, i.e. ��
�������� �!�"��
������$#%��
�������� . For action � to
be executable over a time interval & ')(�'+*,���	�������.- , atoms in
�"��
������ must be true at ' , and atoms in ��
/������� must remain
true (i.e. not interfered with) over the entire interval. Effects
of the action take place at some point in the interior of the
interval, and thus can be relied on to hold at the end point.
This respects the “no moving target” rule of PDDL2.1, but
in a different way: instead of requiring plans to explicitly
separate an action depending on a condition from the effect
that establishes the condition, TP4’s semantics requires that
change takes place in a time interval.

TP4’s interpretation makes durative actions strictly less
expressive than in PDDL2.1, where effects can be specified
to take place exactly at the start or end of an action. In par-
ticular, it does not support actions that make a condition true
only during their execution (i.e. add the atom at the start of
the action and delete it again at the end), which prevented
TP4 from solving any of the problems with timed initial lit-
erals, since the compilation of those makes use of this type
of effect.

Resources
TP4 does not deal with fluents but with resources, specifi-
cally resources of two kinds: A reusable resource is one that
actions “borrow” some quantity of during their exectuion,
but the total amount of the resource (free and in use), does
not change over time. A consumable resource is one that
each action may either consume or produce some quantity
of, thus changing the total (and free) amount of the resource
over time3.

Resources of both kinds can be modelled in PDDL2.1 us-
ing fluents and certain “patterns” of action conditions and

3This is similar to what is called a reservoir by Laborie
(2001). A reservoir, however, can be both borrowed and con-
sumed/produced.

edelkamp
 38

effects, and TP4 identifies resources in a problem by look-
ing for these patterns. For example, an action with the ef-
fects (at start (decrease 021)) and (at end
(increase 021)), and the condition (over all
(>= 0 0)), uses the fluent 0 as a reusable resource4.
However, in PDDL2.1 it is possible to express the same re-
source restriction also in other ways, e.g. by having actions
that use the resource increase 0 at start, decrease it at end and
require that 04365 , for some static fluent 5 representing the
capacity of the resource. TP4’s resource finding procedure
had to be extended with several new patterns to correctly
identify resources in the umts competition domain.

TP4 requires consumable resources to be decreasing, i.e.
actions may only consume (not produce) them5. It also does
not allow a resource to be used both as a reusable and a
consumable. Among the competition domains involving re-
sources, only the settlers domain failed to meet these
restrictions.

TP4/HSP 78 Planning Algorithm
TP4 searches for plans using temporal regression, i.e.
backchaining from the problem goals over actions that are
positioned in time so that they form a schedule, not just a se-
quence. The search is done using IDA*, including standard
enhancements such as cycle checking and a bounded trans-
position table, and guided by an admissible heuristic, which
is derived from the problem specification. The planner is
described in more detail in (Haslum & Geffner 2001).

HSP
�� is very similar: the only difference is that it invests

more time in computing a more accurate heuristic before the
search. It does so by solving a relaxed version of the prob-
lem and recording information discovered in the search. TP4
computes the 9;: heuristic (which assigns an estimated cost
to all possible sets of at most < subgoals, see Haslum and
Geffner (2001) for the definition of 9>= , for 1?�A@B(DC�CDC).
HSP

�� does likewise, but improves on this by computing part
of the 9;E heuristic (assigning a better estimated cost to some
sets of F or fewer subgoals) by searching the AND/OR graph
corresponding to the definition of the 9>E . The details are
described in a forthcomming paper6.

In the competition domains, TP4 and HSP
�� showed lit-

tle difference in performance, with two exceptions: in the
umts domain, HSP

�� did a little better than TP4, while in the
airport domain, it was much worse.

New Trix
Apart from the already mentioned extension to the resource
finding procedure, TP4 learned two new tricks during the
competition7:

4TP4 also allows actions to use atoms as unary reusable re-
sources, identified by a similar pattern.

5If both consumption and production of the same resource are
allowed, and actions may test if a resource is depleted (without
changing it), the planning problem becomes undecidable (Helmert
2002). Whether this is the case also when such “resource tests” are
disallowed is not completely clear.

6Submitted to ECAI.
7Again, the same applies to HSP

�� .

Irrelevance Detection
Detection (by standard reverse unreachability) and removal
of irrelevant atoms and actions helped speed up the planner
on some problems in the airport domain, but was used
for all domains since the time overhead for this analysis is
quite small.

Two-Stage Optimization
When using IDA* with temporal regression, the cost bound
tends to increase by the gcd (greatest common divisor) of
action durations in each iteration, except for the first few it-
eration8. In the satellite domain, durations differ by
large amounts and are also specified with a high resolution
(e.g. one action may have a duration of G�C H�I and another a
duration of @�<B<�C �BF) which means the gcd is very small (on
the order of JJ.KLK). Combined with the fact that the differ-
ence between the initial heuristic estimate of the solution
cost (makespan) of a problem and the actual optimal cost is
in this domain often large, this results in an almost astro-
nomical number of IDA* iterations being necessary to find
the optimal solution.

To counter this problem, the following “two-stage opti-
mization” scheme was introduced:

1. First, all action durations are rounded up to the nearest
integer.

2. Then, the resulting problem is solved using the standard
TP4 method. The cost (makespan) of the solution is an
upper bound on the optimal solution cost of the original
problem.

3. Finally, action durations are restored to their original val-
ues, and a branch-and-bound search, starting from the
known upper bound, is used to find the optimal solution.

The solution found in step 2 is always a valid solution
to the original unmodified problem9. The solution cost
(makespan), however, may be greater than the optimal so-
lution cost for the unmodified problem. Thus it is an upper
bound. The branch-and-bound search in step 3 is carried
out on the unmodified problem (with the original, fractional,
action durations), so the final solution found in this search
is the optimal solution to the original problem. Thus, two-
stage optimization does not compromise the optimality of
the planner overall.

Rounding action durations up to integer values increases
their gcd to at least @ (a substantial improvement from JJMKLK),

8TP4 treats action durations as rationals: by the gcd of two ra-
tionals N and O is meant the greatest rational P such that NRQTSUP
and O;QWVXP for integers S and V . Note that the planner does
not compute the gcd of action durations and use this to increment
the cost bound. The bound is in each iteration increased to the
cost of the least costly node that was not expanded due to having a
cost above the bound in the previous iteration (i.e. standard IDA*).
That this frequently happens to be (on the order of) the gcd of ac-
tion durations is an (undesirable) effect of the branching rule used
to generate the search space.

9This fact is due to the semantics that TP4 ascribes to durative
actions. It does not hold for arbitrary problems interpreted accord-
ing to the PDDL2.1 semantics.

edelkamp
 39

so the search in step 2 is much faster than what an IDA*
search on the unmodified problem would be. Since the
branch-and-bound search does not suffer from the problem
of small gcd’s and the upper bound obtained from step 2
tends to be quite close to the optimal cost, step 3 is rela-
tively quick, and the total time less than that taken by plain
TP4.

In principle, there seems to be no reason why in step 1
action durations could not be rounded up to produce a gcd
greater than @ , even going as far as assigning unit duration
to all actions (essentially turning the problem into a non-
temporal problem). Whether this would make the two-stage
optimization scheme more effective is a topic that may be
investigated in the future.

Among the competition domains, two-stage optimization
was effective only in (temporal variants of) the satellite
domain, and it was not used for any other domain.

References
Fox, M., and Long, D. 2003. PDDL2.1: An ex-
tension to PDDL for expressing temporal planning
domains. Journal of AI Research 20:61 – 124.
http://www.cs.washington.edu/research/
jair/contents/v20.html.
Haslum, P., and Geffner, H. 2001. Heuristic planning with
time and resources. In Proc. 6th European Conference on
Planning (ECP’01), 121 – 132.
Helmert, M. 2002. Decidability and undecidability results
for planning with numerical state variables. In Proc. 6th In-
ternational Conference on Artificial Intelligence Planning
and Scheduling (AIPS’02), 303 – 312.
Laborie, P. 2001. Algorithms for propagating resource
constraints in AI planning and scheduling: Existing ap-
proaches and new results. In Proc. 6th European Confer-
ence on Planning (ECP’01), 205 – 216.
Smith, D., and Weld, D. 1999. Temporal planning with
mutual exclusion reasoning. In Proc. 16th International
Joint Conference on Artificial Intelligence, 326 – 333.

edelkamp
 40

edelkamp

Fast Downward
Making use of causal dependencies in the problem representation

Malte Helmert and Silvia Richter
Institut für Informatik, Albert-Ludwigs-Universität Freiburg

Georges-Köhler-Allee, Gebäude 052, 79110 Freiburg, Germany
{helmert, srichter}@informatik.uni-freiburg.de

Abstract

Fast Downward is a propositional planning system based on
heuristic search. Compared to other heuristic planners such
as FF or HSP, it has two distinguishing features: First, it is
tailored towards planning tasks with non-binary (but finite
domain) state variables. Second, it exploits the causal de-
pendency between state variables to solve relaxed planning
problems in a hierarchical fashion.

Fast Downward is a planning system based on heuristic
state space search, in the spirit of HSP or FF (Bonet &
Geffner 2001; Hoffmann & Nebel 2001). It makes use of
the causal graph (or CG) heuristic, introduced in an ICAPS
2004 paper (Helmert 2004). In this extended abstract, we
aim at providing a high-level overview of Fast Downward,
emphasizing the features that are not described in the CG
article. While the CG heuristic was introduced for pure
STRIPS domains, Fast Downward is capable of dealing with
the complete propositional, non-temporal part of PDDL. In
other words, it handles arbitrary ADL constructs and derived
predicates (axioms).

Vancouver

tSquamish

pWhistler

Figure 1: A simple planning task. Get the ICAPS participant
p to Vancouver, using the taxi t.

The key feature of the CG heuristic — and the origin of
Fast Downward’s name — is the use of hierarchical decom-
position to solve relaxed planning tasks. To illustrate this,
consider the planning task in Fig. 1: The objective is to move
the ICAPS participant p from Whistler (W) to Vancouver
(V), using a taxi (t) initially located at Squamish (S).

The CG heuristic solves this problem hierarchically. The
high-level goal is to change the state of the participant from

V

WS

T

de
ba

rk
V

[t
:
V

] enter
V

[t
:
V

]

debark
W [t

: W
]enterW [t

: W
]debarkS

[t :
S

]enterS
[t :

S
]

V

S

W

dr
iv

e V
,
S

drive
S

,
V

drive
W

,
S

dr
iv

e S
,
W

Figure 2: Domain transition graphs for the participant p
(left) and taxi t (right).

“at Whistler” to “at Vancouver”. The easiest way to do this
is to board the taxi at Whistler and debark at Vancouver; at
this point we do not care that these actions are not immedi-
ately applicable. This plan is found by looking at the ICAPS
participant’s domain transition graph, a directed graph de-
picting the ways in which p can change locations (Fig. 2).
The different locations or states of p form the nodes of the
graph, while the arcs correspond to operators affecting these
states, annotated with their preconditions.

To estimate the cost of the “high-level plan” p : W ;

T ; V , the heuristic solver inserts steps to satisfy the pre-
conditions of the two operators by recursive invocations of
the same algorithm. The transition p : W ; T requires the
taxi to be at Whistler, as evidenced by the labeling of that
arc in p’s domain transition graph. So we recursively find
a (one-step) plan to move the taxi from its initial location
Squamish to Whistler. Because there are no conditions on
the transitions of the taxi (Fig. 2), there is no further recur-
sion. We have thus computed that the cost of changing the
state of the participant from W to T is 2, counting one action
for the transition itself and one for the recursively calculated
set-up cost. Similarly, we compute that the second transition
p : T ; V is 3, because the taxi is now located in Whistler
and thus needs two actions to get to Vancouver, in addition
to the one action required to move p out of the taxi. Adding
the transition costs together, the CG heuristic approximates
the goal distance as 5 = 2 + 3.

Observe that state transitions of the passenger are condi-

edelkamp
41

tioned on the state of the taxi, while the converse is not the
case. We say that state variable p is causally dependent on
state variable t. The set of causal dependencies of a planning
tasked defines the causal graph of that task. Hierarchical de-
composition is most suited to planning domains with acyclic
causal graphs. In fact, the CG heuristic can only be calcu-
lated for tasks with acyclic causal graphs, and hence Fast
Downward’s heuristic estimator breaks causal cycles for the
purposes of the heuristic estimator, by ignoring (some) op-
erator preconditions. Contrast this relaxation to HSP’s ap-
proach of ignoring (some) operator effects.

We hope that this small example provides the reader with
some intuition of the basic ideas of the CG heuristic. Again,
we point to the reference for a detailed exposition (Helmert
2004). In the following, we discuss the overall structure of
the Fast Downward planner, emphasizing aspects that go be-
yond the STRIPS planner described in the conference paper.

Structure of the planner
Fast Downward currently consists of three independent pro-
grams:

1. the translator (written in Python),

2. the preprocessor (written in C++), and

3. the search engine (also written in C++).

To solve a planning task, the three programs are called in se-
quence; they communicate via text files. We have found that
this clear separation facilitates simultaneous development of
the planner by several people in its current prototype stage.
Of course the current state of affairs leads to some inefficien-
cies, especially when solving easy or moderately difficult
planning tasks. For hard tasks, runtime is typically domi-
nated by the search engine.

Translator
The translator has the following responsibilities:

• Compiling away (most) ADL features.

• Grounding the operators and axioms.

• Converting the propositional (binary) representation to
one with multi-valued state variables.

It is commonly known that some features of ADL can
be compiled away easily, i.e. without significantly increas-
ing the problem representation, while others cannot (Nebel
1999). However, in the presence of axioms, all ADL con-
structs except for conditional effects can be translated to
STRIPS quite easily.

Fast Downward applies the following transformations, in
order, to simplify the problem representation:

• Translate implications to disjunctions and translate all
conditions to negation normal form (NNF).

• Compile away universal quantifiers in conditions.

• Translate conditions to prenex normal form.

• Translate the quantifier-free part of conditions into dis-
junctive normal form.

• Split operators or axioms with disjunctive conditions into
several operators or axioms, and split conditional effects
with disjunctive conditions into several effects.
All these transformations are fairly basic, except maybe

for the elimination of universal quantifiers explained now.
Using the equivalence ∀xϕ ≡ ¬∃x¬ϕ, the translator intro-
duces a new axiom for ∃x¬ϕ and replaces the universally
quantified condition ∀xϕ by the literal ¬new-axiom(V),
where V is the set of free variables in ∃x¬ϕ.

For example, the blocked axiom in the Promela domain
contains the condition (ignoring types):

∀t(∀s′¬trans(q, t, s, s′) ∨ blocked-trans(p, t)).

This is translated to the condition ¬new-axiom(p, q, s),
where new-axiom(p, q, s) is defined as:

∃t¬(∀s′¬trans(q, t, s, s′) ∨ blocked-trans(p, t)),

which is translated to NNF, resulting in:

∃t(∃s′trans(q, t, s, s′) ∧ ¬blocked-trans(p, t)).

After all transformations, all conditions are essentially
simple conjunctions of literals (the remaining existential
quantifiers can be considered action, axiom or effect param-
eters), so the resulting planning task is expressed in STRIPS
with negation plus universal conditional effects and axioms.

For such planning tasks, efficient grounding is compar-
atively easy. Following the idea of Mips (Edelkamp &
Helmert 1999), we avoid instantiating operators which can
never be applied by first computing the set of propositions
which are reachable in a relaxed exploration, ignoring neg-
ative conditions and effects. This amounts to the evaluation
of a set of Horn logic rules derived from the actions and ax-
ioms. For example, the above axiom corresponds to the rule

new-axiom(p,q,s) :- trans(q,t,s,s’).

The final translation step consists of replacing the set of
binary state variables obtained by grounding with a smaller
set of finite domain state variables capturing the same in-
formation. This is done by synthesizing invariants of the
planning task, again using the algorithm of Mips.

To illustrate this, the variables p and t of our earlier exam-
ple task are derived from the original PDDL representation
by use of invariants. Specifically, the invariant

∃=1l : taxi-at(l),

justifies replacing the three binary variables taxi-at(V),
taxi-at(S) and taxi-at(W) by the variable t with do-
main {V, S, W}.

Preprocessor
The preprocessor is responsible for:
• Computing the causal graph of the planning task.
• Computing the domain transition graphs for each state

variable.
• Computing the successor generator, a data structure that

supports efficiently computing the successor states of a
world state. (We do not discuss the successor generator in
detail.)

edelkamp
42

Computing the causal graph is straight-forward: Variable
A depends on variable B iff there is an operator (axiom) with
A as an effect (consequence) and B as a condition or other
effect. One notable optimization is employed at this point:
All variables which are not mentioned in the goal and on
which the goal does not depend directly or indirectly can be
eliminated. For example, in the PSR domain, all instances
of the upstream axiom for which the first parameter is not
a circuit breaker may be safely removed.

As noted before, an acyclic causal graph is required for
the CG heuristic. Therefore, for the purposes of the do-
main transition graphs, we compute an acyclic skeleton of
the causal graph, i.e. a maximal acyclic subgraph. Cycles
are broken by removing the weakest edges; this means that
every dependency is weighted according to how often it oc-
curs in the operators, and the edges with least weight are
removed iteratively, until no cycle remains.

The central part of the preprocessor is the computation of
the domain transition graphs. The domain transition graph
of a variable contains arcs for all operators or axioms af-
fecting this variable. For example, the graph for p in Fig. 2
contains an arc from V to T because there exists an operator
with precondition p = V and effect p = T , corresponding
to the action of boarding the taxi in Vancouver. The arc is
annotated with the condition t = V because the operator
requires the taxi to be in Vancouver as an additional pre-
condition. We would omit this condition if the causal link
between p and t were not part of the acyclic skeleton of the
causal graph computed earlier. Thus, this is the part of the
planner where some preconditions get ignored.

The reference (Helmert 2004) explains the details of do-
main transition graph construction for basic STRIPS-like
operators; we note that the conditional effects present in the
more general case do not lead to complications because do-
main transition graphs deal with operators one effect at a
time, and for unary operators effect conditions can safely be
considered part of the operator precondition.

Search Engine
After so much preprocessing, the actual search algorithm is
not very mysterious. Fast Downward uses greedy best-first
search, always expanding the node with the best heuristic
estimate. The heuristic is computed from the domain transi-
tion graphs as follows: The goal distance of a state is taken
to be the sum of the costs for all necessary changes of vari-
ables. The cost for changing the value of one variable V
from v to v′ is the sum of the costs for all transitions of V
on the shortest path from v to v′ in V ’s domain transition
graph, computed using Dijkstra’s algorithm.

The cost for traversing a single arc in the domain transi-
tion graph — the arc weight in Dijkstra’s algorithm — is one
plus the set-up cost of the transition, the sum of the (recur-
sively computed) costs for achieving all necessary precondi-
tions according to the arc label.1 This follows the informal
description of the CG heuristic in the introduction.

1If the arc corresponds to the derivation rule of an axiom, not to
an action, then the weight is just the set-up cost, without adding 1.

Helpful Actions
As a further enhancement, Fast Downward incorporates the
CG counterpart of FF’s helpful actions: The planner collects
all operators that correspond to domain transition graph arcs
which contribute to the heuristic estimate of the given state.
It then checks which of these operators are applicable in the
current state. These form the set of helpful actions in that
state. This set can be empty although the heuristic estimate
is finite, because domain transition graphs do not respect all
operator preconditions, as discussed before.

The overall best first search algorithm integrates helpful
actions by maintaining two separate open lists; all states are
first inserted into the first open list. When a state from this
list is expanded, the “helpful” successors are generated and
the state is inserted into the second open list. When a state
from the second list is expanded, its “non-helpful” succes-
sors are expanded. The search control always selects that
open list for expansion which has generated fewer search
states so far. This means that if an average state encountered
during search has 4 helpful and 40 other successors, the first
open list is selected ten times out of eleven, thus biasing the
exploration towards helpful actions.

Fast Diagonally Downward
As a final twist, we have also implemented a modified ver-
sion of the search engine which combines CG heuristic and
FF heuristic. This is based on the observation that CG and
FF heuristic perform badly in different planning domains
(Helmert 2004). Combining the forward and downward
thrust by a simple vector addition, we have called this variant
of the Fast Downward planner Fast Diagonally Downward.

Fast Diagonally Downward’s search engine computes
both the CG and FF heuristic for each state, as well as mak-
ing use of helpful actions of both kinds. It uses separate
open lists for the two heuristics, alternately expanding the
node preferred by the FF estimate and the node preferred by
the CG estimate. Newly generated states are always added
to both open lists, making the approach different to simply
running two planners in parallel. The hope is that the heuris-
tics can lead each other out of their respective local minima,
and indeed in some domains the combined approach works
better than either of the original heuristics.

References
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1):5–33.
Edelkamp, S., and Helmert, M. 1999. Exhibiting knowl-
edge in planning problems to minimize state encoding
length. In Proc. ECP-99, 135–147.
Helmert, M. 2004. A planning heuristic based on causal
graph analysis. In Proc. ICAPS 2004.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.
Nebel, B. 1999. What is the expressive power of disjunc-
tive preconditions? In Proc. ECP-99, 294–307.

edelkamp
43

SATPLAN04: Planning as Satisfiability

Henry Kautz
Department of Computer Science & Engineering

University Of Washington
Seattle, WA 98195 USA

SATPLAN04 is a updated version of the planning
as satisfiability approach originally proposed in (Kautz
& Selman 1992; 1996) using hand-generated transla-
tions, and implemented for PDDL input in the black-
box system (Kautz & Selman 1999). Like blackbox,
SATPLAN04 accepts the STRIPS subset of PDDL and
finds solutions with minimal parallel length: that is,
many (non-interferring) actions may occur in parallel
at each time step, and the total number of time steps
in guaranteed to be as small as possible.

Also like blackbox, SATPLAN works by:

1. Constructing a graphplan-style (Blum & Furst 1995)
style planning graph up to some length k;

2. Translating the constraints implied by the graph into
a set of clauses, where each specific instance of an
action or fact at a point in time is a proposition;

3. Using a general SAT solver to try to find a satisfying
truth assignment for the formula;

4. If the result is unsat or time out, increment k and
repeat;

5. Otherwise, translate the solution to the SAT problem
to a solution to the original planning problem;

6. Postprocess the solution to remove (some of the) un-
necessary actions.

The final step is useful because the SAT translation
of the planning graph does not guarantee that every
action proposition that is true in the solution is actually
needed in order to achieve the goals of the original plan.

SATPLAN04 supports four different encoding styles,
“action-based”, “graphplan-based”, “skinny action-
based”, and “skinny graphplan-based”, based on the
classes of clauses included in the encoding. Classes of
clauses are:

1. An action implies its preconditions.

2. A fact implies the disjuction of the actions that have
it as an effect (including “no op” actions) at the pre-
vious time slice.

Copyright c© 2004, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

3. An action implies each of the disjunctions of the ac-
tions at the previous time slice that add each of its
preconditions.

4. Actions with conflicting preconditions and effects are
mutually exclusive.

5. Actions for which mutual exclusion can be inferred
using graphplan’s constraint propagation algorithm
are mutually exclusive.

“Graphplan-based” encodings use classes (1) and (2),
while “action-based” encodings use class (3). “Skinny”
encodings include class (5) while non-skinny encodings
include both (5) and (6).

In general the action-based skinny encoding gives the
most robust performance, simply because as the small-
est in terms of both variables and clauses it is least likely
to result in a formula that is too large to fit into main
memory. (Satisfiability testing and virtual memory are
an unhealthy combination.)

The single most important difference between black-
box and SATPLAN04 is the SAT solvers used. Black-
box included the original graphplan (non-translation
based) search engine, the local-search SAT solver walk-
sat (Selman, Kautz, & Cohen 1994), the forward-
checking DPLL-based solver satz (Li & Anbulagan
1997), and the clause-learning DPLL-based solvers rel-
sat (Bayardo & Schrag 1997) and zChaff (Moskewicz et
al. 2001).

By contrast, SATPLAN04 uses a single highly opti-
mized DPLL-based solver called “siege”, that was devel-
oped by Lawrence Ryan as part of his research at Simon
Fraiser University under the direction of Prof. David
Mitchell. Linux binaries of siege can be downloaded
from http://www.cs.sfu.ca/ loryan/personal/.
We thank Lawrence Ryan for permission to incorporate
siege in SATPLAN04.

Siege, like relsat and zChaff, performs clause-
learning (that is, inferring new clauses at backtrack
points), and like zChaff uses optimized “watched lit-
eral” data structures for managing large clause sets
efficiently. Beyond that it appears to incorporate a
number of other optimizations that make it particu-
larly well-suited for the planning as satisfiability ap-
proach. In our initial informal tests siege signifi-

edelkamp
44

cantly outperformed all the other solvers mentioned
above. Later this summer we will post detailed
comparisons of the different SAT solvers on plan-
ning formulas on our planning as satisfiability web
page, http://www.cs.washington.edu/homes/kautz
/blackbox/.

The PDDL parser in SATPLAN04 is considerably
more robust than the one in blackbox, but it does not
yet handle any non-STRIPS features other than types,
such as derived effects and conditional actions. We plan
to extend SATPLAN04 to handle these and other fea-
tures in time for the 2005 planning competition.

References
Bayardo, R. J. J., and Schrag, R. C. 1997. Using
CSP look-back techniques to solve real-world SAT in-
stances. In Proceedings of the Fourteenth National
Conference on Artificial Intelligence (AAAI’97), 203–
208.
Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. In Proceedings of the 14th In-
ternational Joint Conference on Artificial Intelligence
(IJCAI 95), 1636–1642.
Kautz, H., and Selman, B. 1992. Planning as satisfia-
bility. In Proceedings of the 10th European Conference
on Artificial Intelligence, 359–363. Wiley.
Kautz, H., and Selman, B. 1996. Pushing the en-
velope: Planning, propositional logic, and stochastic
search. In Proceedings of the 13th National Confer-
ence on Artificial Intelligence (AAAI-96), 1194–1201.
AAAI Press. (Best Paper Award).
Kautz, H., and Selman, B. 1999. Unifying sat-based
and graph-based planning. In Proceedings of the 16th
International Joint Conference on Artificial Intelli-
gence (IJCAI-99), 318–325. Morgan Kaufmann.
Li, C. M., and Anbulagan. 1997. Heuristics based on
unit propagation for satisfiability problems. In Pro-
ceedings of the 15th International Joint Conference on
Artificial Intelligence (IJCAI 97), 366–371.
Moskewicz, M.; Madigan, C.; Zhao, Y.; Zhang, L.;
and Malik, S. 2001. Chaff: Engineering an efficient
sat solver. In 39th Design Automation Conference.
Selman, B.; Kautz, H.; and Cohen, B. 1994. Noise
strategies for improving local search. In Proceedings of
the 12th National Conference on Artificial Intelligence
(AAAI-94), 337–343. AAAI Press.

edelkamp
45

Tilsapa – Timed Initial Literals Using SAPA

Bharat Ranjan Kavuluri Senthil U
bharat@cs.iitm.ernet.iin you_yes@engineer.com

AIDB Lab
IIT Madras

Guindy,Chennai
India- 600036

System Abstract
This system is an offshoot of SAPA[1] developed by Binh Minh Do and Subbarao
Khambampati. The following diagram represents the architecture of SAPA.

[1]Architecture diagram of SAPA
A time stamped state can be described as a quintuple S = (P, M, Π, Q, t) where
P = Set <pi,ti> of predicates pi and the time of their last achievement ti < t.
M = Set of functions representing resource values.
Π = Set of protected persistent conditions
Q = Queue of future events
T = Time stamp of S [1]

Queue of Time
Stamped states

Select state
with

lowest f-value

Satisfi
es

Goals

Partialize
the

p.c. plan

Expand
state by
applying
actions

Build RTPG
Propagate Cost

Functions
Extract relaxed

plan
Adjust for
Mutexes;
Resources

YesNo

Planning
Problem

Generate
start
state

f can have both Cost
and Makespan
components

Heuristic
estimation

Return o.c
and p.c plans

mailto:bharat@cs.iitm.ernet.iin
mailto:you_yes@engineer.com
edelkamp
 46

 Timed Initial Literals are implemented using SAPA by the following method
o Include them in the event queue at the outset (Plan request)
o Include them in the predicate set P before the state is expanded by applying

new actions
 Derived predicates can be introduced before any action is considered into the set of

Predicates, which are valid for the current state.
 Constants are included with each plan request as initial predicates.

The major bottleneck is the heuristic computation and propagation of the cost where
 it is assumed that each predicate can only be caused by an action.
 the heuristic value of the state is a function of

o Cost of the relaxed plan from this state to the goal state.
o Makespan of the relaxed plan.

We are currently working on optimizing the cost propagation process after taking the timed
initial literals into consideration. The system is still under implementation.

References:
[1] Do, M. and Kambhampati, S. (2003) "SAPA: A Multi-objective Metric Temporal
Planner", Journal of Artificial Intelligence Research, Volume 20, pages 155-194.

edelkamp
 47

The Optop Planner

Drew McDermott
Yale University Computer Science Department

P.O. Box 208285
New Haven, CT 06520-8285
drew.mcdermott@yale.edu

Introduction

Optop1 is an estimated-regression planner, meaning
that it is a “state-space planner” that is guided by a
heuristic measure of how close a situation is to satisfy-
ing a goal, and how good it is according to an objective
function. Research on Optop is focused more on deep
reasoning about situations and transitions than on raw
performance.

Instead of talking about “state space,” I prefer to
characterize the search space of Optop as the set of
plan prefixes, that is, sequences of actions that are ex-
ecutable starting in the initial state. Such a sequence
generates a unique situation, called the current situa-
tion for that prefix.

Heuristic Search Using
Estimated-Regression Graphs and

Objective Functions

Optop decides which plan prefix to work on next us-
ing a heuristic inspired by means-ends analysis (Ernst
& Newell 1969). For each plan prefix, it constructs a
regression-match graph that is a simplified prediction of
how that goal might be achieved starting in the current
situation for a given plan prefix. The graph is con-
structed by maxmatching the goal against the current
situation, which produces a substitution (called a max-
imal match) that binds the variables in the goal so as
to make as many of its conjuncts true as possible. The
remaining conjuncts, the differences left by the max-
match, become subgoals. For each literal in differences,
Optop finds all the actions, processes, or implications
that could make it true. Each has some kind of precon-
dition that is maxmatched against the current situation,
giving further differences. As this process is continued,
a tripartite graph emerges, each of whose nodes is of
one of the following three types:

1. An L-node: A literal occurring as differences in a
maxmatch.

Copyright c© 2004, American Association for Artificial In-
telligence (www.aaai.org). All rights reserved.

1This looks like an acronym for something; ordered? op-
erator? tops? How is it syllabified, as Opt-op or Op-top?

2. An effort-spec: An L-node plus numerical constraints
on its free variables. Numerical constraints can’t be
handled by regression, but must be postponed and
satisfied by a special numerical module at the appro-
priate time.

3. A reduction: A record of the application of a “regres-
sion method” to an effort-spec. A typical regression
method corresponds to an action definition, and spec-
ifies sufficient conditions for that action to cause each
of its possible effects. (Some of the other kinds are
discussed below.) These conditions are maxmatched
to derive a set of differences, each of which is an effort-
spec in the graph.

Each effort-spec may have several reductions, and
each reduction has a set of precondition effort-specs
which are sufficient to ensure that the action, process,
or implication associated with the reduction will cause
the L-node of the effort-spec to be true. (Actually, re-
ductions and maxmatches are cached on L-nodes; when
an effort-spec for an L-node, is built, Optop copies the
reductions, adds the numerical constraints if any, and
verifies that they are satisfiable.)

L-nodes and effort-specs are “uniquified”; that is, if
an equal L-node already exists, it is used instead of
a new one being created. That means the regression-
match graph for a planning problem tends to be much
smaller than its situation space.

The graph yields a rough estimate of the difficulty of
the problem, obtained by counting the actions in a sub-
tree of the graph that is minimal in a sense explained
in (McDermott 1996; 1999). However, many planning
problems include a specification of an “objective func-
tion” to be minimized. Optop finds linearizations of
the regression-match graph that then give rise to plau-
sible projections of the rest of the plan. The result is
a collection of feasible actions and speculative versions
of the final situation that might follow from them, and
Optop evaluates the objective function in those situa-
tions to produce estimates of the quality of alternative
extensions of the current plan prefix (McDermott 2003).

edelkamp
48

Expressivity
In addition to actions, Optop can reason about au-
tonomous processes, which run whenever their condi-
tions are true without the need for planner intervention.
The planner can plan to bring these into existence by
making the condition true, or can take advantage of
processes defined as part of the problem.

Optop can handle all of ADL (Pednault 1989), in-
cluding universally-quantified preconditions. It uses the
Screamer system (Siskind & McAllester 1993) to solve
numerical constraints, especially those that arise in con-
nection with predicting when processes will cause some-
thing to become true.

The reason for Optop’s versatility is that its rea-
soning is closely tied to complete descriptions of sit-
uations, unlike partial-order planners (Weld 1994) and
Graphplan-style planners (Blum & Furst 1997), which
reason about goal-satisfaction links, mutual-exclusion
relations, and the like without tying them to any partic-
ular situation. Generating the regression-match graph
requires reasoning backward from the goal to the cur-
rent situation, and can use any reasoning technique,
domain-dependent or -independent, without worrying
about enough information is known about that situa-
tion. (Of course, that is not the only consideration;
Optop is no better than other Strips-style planners in
doing regression involving geometrical reasoning.)

Once an action is chosen to explore, Optop typically
generates a new current situation following that action.
However, if autonomous processes are active, the next
situation is the one that occurs when those processes
cause a discrete change of some kind. Again, just about
any computation that projects the sequelae of the cur-
rent state of affairs is easy to exploit.

In addition to its heuristic evaluator, a planner must
also have a search strategy. Optop uses best-first search
as long as its heuristic is sharply differentiating among
alternative plan prefixes. When too many accumulate
that seem to be of about the same quality, it switches
to a strategy of “hill climbing with random restarts.”
In this mode, it always extends the plan prefix with
the action that looks the best locally; that is, if it has
to choose among actions it with A1, . . . , Ak, it picks
an Ai that dominates A1, . . . , An, without regard to
previously generated possibilities. If it reaches a point
where there is no feasible action that leads to a new
situation, it makes a random choice among all the plan
prefixes it has generated and resumes hill climbing from
there.

Changes for the Competition
To illustrate how easily changes are made to Optop,
here’s an account of recent changes to the system.2

The ability to handle universally-quantified precon-
ditions was added to Optop for this year’s IPC. An or-
dinary precondition set such as (and (Q ?y) (P a ?y))

2Optop is written in Lisp; I can’t imagine how it could
evolve so quickly if it were written in any other language.

is handled during maxmatching by finding values for ?y
that make either (Q ?y) or (P a ?y) true. The other
precondition, with ?y substituted away, becomes a dif-
ference to be reduced. Now suppose we have pre-
conditions (and (Q ?y) (forall (z) (if (R ?y) (P ?y

z)))). Suppose ?y=b make (Q ?y) true. Then the re-
maining differences are all the literals whose unprov-
ability produces a counterexample to the universal. A
counterexample is an instance of (and (R z) (not (P b

z))), which can be produced by finding z’s such that
(R z) is provable and (P b z) is not; each such (P b z)
becomes a difference. Writing and plugging in the code
for this mechanism was a relatively simple task.

Note that the maxmatcher must find values for ?y

before considering the universal. That’s because there
is no way to enumerate all the values y that make
(forall (z) (if (R y) (P y z))) provable, or all those
that make it unprovable. (Provability is used as a
stand-in for truth, because PDDL relies on a closed-
world assumption: if a proposition can’t be proved, it is
taken to be false.) The deductive system built-in to Op-
top distinguishes between queries with no answers and
queries with an unknown number of answers that might
be handled if more of their free variables are bound.
This turns out to be a very useful feature with a va-
riety of uses, one of which is to decide how to order
preconditions during maximal matching.

For the competition, PDDL was extended in two fur-
ther ways: with derived predicates and timed initial
literals. Optop already had derived predicates, which
it used in the following way: Suppose, in the previous
example, there was an axiom3

(forall (x)
(<- (Q ?y)

(exists (v)
(and (R v ?y) (R ?y v)))))

The existence of this axiom gives the maxmatcher an
extra degree of freedom. Instead of having to classify
(Q a) as a difference, it can also find a v such that (R

v a) and make (R a v) a difference. The term derived
predicate is just another name for a predicate defined
by a single backward-chaining axiom.

Unfortunately, expanding axioms this way is not a
good idea unless the axioms are stratified, meaning that
there is no path from a predicate to itself through the
axioms in question. To handle those correctly, we have
to cope with the recursion by moving it out to the level
of the regression-match graph. That is, an unstrati-
fied axiom gives rise to a different kind of regression
method, in which the conditions lead immediately to a
conclusion with no action or process intervening. For
example, the unstratified axiom

(forall (x y)
(<- (above ?x ?y)

(exists (w)

3The “<-” indicates that the implication is to be used
for backward chaining.

edelkamp
49

(and (above ?x w)
(above w ?y)))))

can be used to reduce an L-node (above a e) to (and

(above a ?w) (above ?w e)), which, after maxmatch-
ing, yields subgoal nodes such as (above b e) (if (above
a b) is true in the current situation). An L-node can
easily occur as a sub-sub-. . . -node of itself, but such
cycles are simply ignored when the regression-match
graph is used to produce and evaluate extensions of the
current plan prefix.

Performance
As shown in (McDermott 1999), although Optop spends
more time per search state than other planners, in some
domains it explores so few states that its run times are
comparable to highly optimized systems. On “well-
behaved” domains, its run times grow polynomially
with problem size.

There is a price to be paid for Optop’s flexibility.
The relaxed search space embodied in the regression-
match graph neglects destructive interactions among
actions (Bonet, Loerincs, & Geffner 1997; Bonet &
Geffner 2001). This neglect makes it difficult to solve
problems in domains in which a crucial condition can
be irreversibly deleted without that being discovered
until several more actions have been added to the plan.
(The classic example is the “Rockets” domain of (Blum
& Furst 1995).) On the other hand, realistic domains
are often more forgiving, and allow problems to be bro-
ken into loosely coupled subproblems that can be solved
by the sort of hill climbing described above.

Future Plans
My current research goal is to add hierarchical and con-
tingency planning to Optop. The former requires aug-
menting search states with information about hierar-
chical plans (i.e., canned plans from a library) that are
in progress. With this addition, the regression-match
graph will be built to handle posted but unsatisfied
goals from the current hierarchical plan —- the script.
An action that is already in the script will not normally
be proposed, unless a new instance is needed in order
to achieve a precondition of some other step.

Contingency planning is mainly a matter of running
the planner for various alternative scenarios. The me-
chanics are easy; the hard part is deciding when to stop
exploring contingencies.

References
Blum, A. L., and Furst, M. L. 1995. Fast planning
through planning graph analysis. In Proc. Ijcai, vol-
ume 14, 1636–1642.
Blum, A. L., and Furst, M. L. 1997. Fast plan-
ning through planning graph analysis. Artificial In-
telligence 1–2 90:279–298.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2).

Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A fast
and robust action selection mechanism for planning.
In Proc. AAAI-97.
Ernst, G. W., and Newell, A. 1969. GPS: A Case
Study in Generality and Problem Solving. Academic
Press.
McDermott, D. 1996. A Heuristic Estimator for
Means-ends Analysis in Planning. In Proc. Interna-
tional Conference on AI Planning Systems, 142–149.
McDermott, D. 1999. Using Regression-match Graphs
to Control Search in Planning. Artificial Intelligence
109(1–2):111–159.
McDermott, D. 2003. Reasoning about autonomous
processes in an estimated-regression planner. In Proc.
Int’l Conf. on Automated Planning and Scheduling.
Pednault, E. P. D. 1989. Adl: Exploring the mid-
dle ground between Strips and the situation calculus.
In Proc. Conf. on Knowledge Representation and Rea-
soning, volume 1, 324–332.
Siskind, J. M., and McAllester, D. A. 1993. Non-
deterministic Lisp as a substrate for constraint logic
programming. In Proc. AAAI 1993, 133–138.
Weld, D. 1994. An introduction to least-commitment
planning. AI Magazine.

edelkamp
50

Combining Backward-Chaining with Forward-Chaining AI Search

�

(ULF�3DUNHU�

eric@semsyn.com
�

�

�

6HPV\Q� LV� DQ� DXWRPDWLF� SODQ� V\QWKHVLV� DOJRULWKP� WKDW�

HQGHDYRUV�WR�IXOILOO�WKH�UHTXLUHPHQWV�RI�IOH[LEOH��LQGXVWULDO�

VWUHQJWK�� QH[W�JHQHUDWLRQ� $,� SODQQLQJ�� � +LVWRULFDOO\�� $,�

SODQQLQJ� V\VWHPV� KDYH� QRW� EHHQ� YLHZHG� DV� SUDFWLFDO�

EHFDXVH�XVHUV�KDYH�KDG�WR�EH�VNLOOHG�DUWLILFLDO� LQWHOOLJHQFH�

SUDFWLWLRQHUV�� � 7KLV� LV� LQ� SDUW� GXH� WR� WKH� IDFW� WKDW� V\VWHPV�

EXLOW�WR�VROYH�ODUJH�VFDOH��UHDO�ZRUOG�SUREOHPV�WUDGLWLRQDOO\�

UHO\� RQ� RSWLPLVDWLRQ�DQG�RU�KHXULVWLF�SURFHGXUHV�� �)XUWKHU�
GLIILFXOWLHV� ZLWK� VXFK� V\VWHPV� DUH� WKDW� RSWLPLVDWLRQ�

SURFHGXUHV� DUH� XVXDOO\� WDLORUHG� DURXQG� VSHFLILF� W\SHV� RI�

SUREOHPV��DQG�WKDW�KHXULVWLF�SURFHGXUHV�DUH�QRW�JXDUDQWHHG�

WR�ILQG�D�VROXWLRQ���7KH�IRUPHU�DSSURDFK�SURGXFHV�SODQQLQJ�

V\VWHPV� WKDW�DUH� LQIOH[LEOH�� �7KH� ODWWHU�DSSURDFK�SURGXFHV�
SODQQLQJ�V\VWHPV�WKDW�DUH�XQVXLWDEOH�IRU�LQGXVWULDO�VHWWLQJV�

WKDW�UHTXLUH�FULWLFDO�V\VWHPV��

�

6HPV\Q��RQ�WKH�RWKHU�KDQG��SHUIRUPV�DQ�H[KDXVWLYH�VHDUFK��

WKHUHE\� UHWDLQLQJ� ERWK� FRPSOHWHQHVV� DQG� IOH[LELOLW\�� � 7KH�

DOJRULWKP� FRPELQHV� ZHOO�NQRZQ� IRUZDUG�FKDLQLQJ� VHDUFK�

�)&6�� DQG� EDFNZDUG�FKDLQLQJ� VHDUFK� �%&6�� VWUDWHJLHV�

IURP� WKH� $,� OLWHUDWXUH� �H�J�� >�@��� � 7KDW� LV�� WKH� FKLOGUHQ�

JHQHUDWLRQ� IXQFWLRQ� RI�)&6� FRQVLVWV� RI� SURGXFLQJ� WKH�

GRPDLQ� DFWLRQV� WKDW� DUH� DSSOLFDEOH� LQ� WKH� FXUUHQW� state��

ZKLOH� WKH�FKLOGUHQ�JHQHUDWLRQ�IXQFWLRQ�RI�%&6�FRQVLVWV�RI�

SURGXFLQJ� WKH� GRPDLQ� DFWLRQV� WKDW� DUH� DSSOLFDEOH� WR� WKH�
FXUUHQW� VHW� RI� subgoals�� � ,QWXLWLYHO\�� FRPELQLQJ� WKH�

DSSURDFKHV� VHHPV� WR� EH� WKH� ULJKW� PRYH�� VLQFH� D� GHVLUDEOH�

RXWFRPH� LV� WKDW� VRPH� subgoals� �QDPHO\�� WKH� WRS�OHYHO�

JRDOV�� DUH� VDWLVILHG� LQ� VRPH� state�� � ,Q� DQ\� FDVH��)&6� DQG�

%&6� VHSDUDWHO\� VKDUH� WKH� FRPPRQ� IDWH� RI� FRPELQDWRULDO�

H[SORVLRQ��DQG�6HPV\Q�KRSHV�WR�SOD\�WKH�VWUHQJWKV�RI�RQH�

DJDLQVW� WKH� ZHDNQHVVHV� RI� WKH� RWKHU� �LQ� WKH� VSLULW� RI� >�@����

7KLV� LV� GRQH� E\� XVLQJ� D� JHQHUDOLVHG� %&6� WR� FRPSXWH� WKH�

FDXVDO� OLQN� LQIRUPDWLRQ�� DQG� E\� XVLQJ� WKH�)&6� VWDWHV� WR�

LPSRVH�D� WRWDO�RUGHU�RQ� �VRPH�VXEVHW�RI�� WKH�FDXVDO� OLQNV���

7KH�FDXVDO�OLQNV�FRPSXWDWLRQ�PXVW�EH�HIILFLHQW�HQRXJK�VR�

DV�QRW�WR�RXWZHLJK�WKH�EHQHILW�RI�WKHLU�XVH��

�

Classical Backward-Chaining Search
�

6HPV\Q� LPSOHPHQWV� %&6� LQ� D� EUHDGWK�ILUVW� PDQQHU� DQG�

HPSOR\V� D� VLGHZD\V�LQIRUPDWLRQ�SDVVLQJ� WHFKQLTXH� WKDW�

SURYLGHV�DQ�XSSHU�ERXQG�RQ�WKH�QXPEHU�RI�DFWLRQV�DW�HDFK�

OHYHO� RI� WKH� VHDUFK�� � 7KH� 6HPV\Q� DSSURDFK� FDQ� EH� EHWWHU�

XQGHUVWRRG�LQ�UHODWLRQ�WR�WKH�FODVVLFDO�%&6�DSSURDFK���7KH�

URRW� RI� WKH� FODVVLFDO� %&6� VHDUFK� WUHH� FRQVLVWV� RI� WKH� WRS�

OHYHO� SUREOHP� JRDOV�� � 7KH� URRW
V� FKLOGUHQ� DUH� WKRVH�

GRPDLQ� DFWLRQV� WKDW� ERWK� DFKLHYH� VRPH� WRS�OHYHO� JRDO�

DQG� GRQ
W� GHOHWH� DQ\� RI� WKH� WRS�OHYHO� JRDOV�� � 'RPDLQ�

DFWLRQV� WKDW� PHHW� WKHVH� UHTXLUHPHQWV� DUH� VDLG� WR� EH�

DSSOLFDEOH� WR� WKH� WRS�OHYHO� JRDOV�� RU� PRUH� JHQHUDOO\��

WKH\� DUH� VDLG� WR� EH� DSSOLFDEOH� WR� WKH� FXUUHQW� VHW� RI�

VXEJRDOV���7KH�FXUUHQW�VHW�RI�VXEJRDOV�IRU�HDFK�FKLOG�LV�

FRPSXWHG�IURP�LWV�SDUHQW¶V�VXEJRDOV�E\�UHJUHVVLQJ�WKH�
SDUHQW� VXEJRDOV� WKURXJK� WKH� FKLOG� >�@�� � 7KH� FKLOGUHQ�

JHQHUDWLRQ�IXQFWLRQ� LV� WKHQ� UH�DSSOLHG�WR�HDFK�RI� WKHVH�

QRGHV� WR� SURGXFH� WKH� URRW
V� JUDQGFKLOGUHQ�� DQG� VR� RQ���

:KHQ�%&6�LV�LPSOHPHQWHG�LQ�D�EUHDGWK�ILUVW�PDQQHU�LW�

EXLOGV� DFWLRQ� VHTXHQFHV� RI� LQFUHDVLQJ� OHQJWK�� ZKLFK�
SURYLGHV� WKH� RSSRUWXQLW\� WR� DSSO\� VLGHZD\V�

LQIRUPDWLRQ�SDVVLQJ�WHFKQLTXHV�>�@��

�

Generalised Backward-Chaining Search
�

6HPV\Q
V� EDFNZDUG�FKDLQLQJ� VHDUFK� �6%&6�� GLIIHUV�

IURP�%&6�LQ�WZR�LPSRUWDQW�ZD\V������,QVWHDG�RI�KDYLQJ�
D�VLQJOH�URRW��WKH�URRW�OHYHO�RI�WKH�6%&6�VHDUFK�WUHH��LQ�

IDFW�� D� JUDSK�� KDV� RQH� QRGH� IRU� HDFK� WRS�OHYHO� JRDO���

7KH� FXUUHQW� VHW� RI� VXEJRDOV� IRU� HDFK� RI� WKHVH� �URRW��

QRGHV� FRQVLVWV� RQO\� RI� WKH� QRGH
V� WRS�OHYHO� JRDO�� � 3XW�

GLIIHUHQWO\�� 6%&6� EXLOGV� SDUWLDO� SODQV�� ZKHUHDV� %&6�

EXLOGV�SODQV���6LQFH�SDUWLDO�SODQV�DUH��KRSHIXOO\��VKRUWHU�

WKDQ� SODQV�� WKH� WRWDO� DPRXQW� RI� ZRUN� LV� VRPHWLPHV�

UHGXFHG�� � ��� 6%&6� WULHV� WR� SDVV� LQIRUPDWLRQ� EHWZHHQ�

SDUWLDO�SODQV�RI�HTXDO�OHQJWK���7KH�VWUDWHJ\�UHOLHV�RQ�WKH�

IDFW� WKDW� WKH� VDPH� GRPDLQ� DFWLRQ� FDQ� EH� DSSOLHG� WR�

PRUH� WKDQ� RQH� VHW� RI� VXEJRDOV� DW� HDFK� OHYHO� RI� WKH�

JUDSK�� �)RU� HYHU\� OHYHO� L� RI� WKH� JUDSK�� DQG� IRU� HYHU\�
GRPDLQ�DFWLRQ�� LI� WKH�DFWLRQ� LV�DSSOLFDEOH�WR�n� VXEJRDO�

VHWV� RI� L�� WKHQ� FUHDWH� RQH� FKLOG� KDYLQJ� WZR� VHWV� RI�

VXEJRDOV���2QH�VHW�RI�VXEJRDOV��u-subgoals��LV�WKH�XQLRQ�

RI� DOO� RI� WKH� n� VXEJRDO� VHWV�� DQG� WKH� RWKHU� VHW� RI�

VXEJRDOV��x-subgoals�� LV�WKH�LQWHUVHFWLRQ�RI�DOO�RI�WKH�n�
VXEJRDO�VHWV�� �1RWH�WKDW�VLQFH�DOO�RI�WKH�n�VXEJRDO�VHWV�

DUH�FRPSXWHG�E\�UHJUHVVLRQ�WKURXJK�WKH�VDPH�DFWLRQ��x-
subgoals� PD\� RQO\�EH�HPSW\� IRU�D� GRPDLQ�DFWLRQ� WKDW�

KDV� QR� SUHFRQGLWLRQ�� � 1RWH� DOVR� WKDW� QRW� FRQVLGHULQJ�

VHFRQGDU\� SUHFRQGLWLRQV� GXULQJ� WKH� UHJUHVVLRQ� PD\�

OHDG�WR�LQFRPSOHWHQHVV���)RU�H[DPSOH��WKLV�RFFXUV�ZKHQ�

DQ� DFWLRQ� A� ZLWK� QR� SUHFRQGLWLRQ� DQG� D� VLQJOH�

FRQGLWLRQDO�HIIHFW�E�KDV�DQ�LQVWDQWLDWHG�SUHGLFDWH�DV�WKH�

DQWHFHGHQW� RI� E�� � ,Q� WKLV� FDVH�� A� LV� IXQFWLRQDOO\�

edelkamp
 51

HTXLYDOHQW� WR� DQ�DFWLRQ� B�� ZKHUH� WKH�SUHFRQGLWLRQ� RI�B� LV�

WKH�DQWHFHGHQW�RI�E��DQG�B¶V�HIIHFW�LV�WKH�FRQVHTXHQW�RI�E��

�
1H[W��ZH�JHQHUDOLVH�ZKDW� LW�PHDQV� IRU�D�GRPDLQ�DFWLRQ� WR�

EH� DSSOLFDEOH� WR� D� VHW� RI� VXEJRDOV�� VLQFH� ZH� QRZ� KDYH� D�

GRXEOH� RI� VXEJRDOV�� � $� GRPDLQ� DFWLRQ� LV� DSSOLFDEOH� WR� D�

VXEJRDO�GRXEOH��u-subgoals��x-subgoals��LI�LW�ERWK�DFKLHYHV�

VRPH�VXEJRDO�LQ�u-subgoals�DQG�GRHVQ
W�GHOHWH�DQ\�VXEJRDO�

LQ�x-subgoals���%HFDXVH�RI�WKH�JHQHUDOL]DWLRQ�LW�LV�SRVVLEOH�
WR�JHQHUDWH�PRUH�FKLOGUHQ�IURP�D�SDUWLFXODU�QRGH� WKDQ� WKH�

XVXDO� ZD\�� EXW� WKH� JHQHUDOLVDWLRQ� DOVR� KDV� WKH� VSHFLDO�

SURSHUW\� WKDW� LW� SXWV� DQ� XSSHU� ERXQG� RQ� WKH� QXPEHU� RI�

FKLOGUHQ�JHQHUDWHG�IRU�D�SDUWLFXODU�OHYHO���,Q�WKH�ZRUVW�FDVH��

HDFK�OHYHO�RI�WKH�JUDSK�FRQWDLQV�QR�PRUH�QRGHV�WKDQ�WKHUH�

DUH�GRPDLQ�DFWLRQV� �LQ� WKH� VSLULW� RI� >�@��� � ,Q�DQG�RI� LWVHOI��

WKH� JHQHUDOLVDWLRQ� RI� VXEJRDO� VHWV� LV� DGPLWWHGO\� QDwYH���

+RZHYHU��RQ�WKH�ZKROH��LW�LV�LQVWUXFWLYH�WR�WU\�WR�FRQYLQFH�

RQHVHOI� WKDW� WKH� 6%&6� JUDSK� FRQWDLQV� DOO� RI� WKH� FDXVDO�

OLQNV��DQG�WKDW�QR�VROXWLRQV�ZLOO�EH�ORVW��

�

Goal-Directed Forward-Chaining Search
�

6HPV\Q
V� IRUZDUG�FKDLQLQJ� VHDUFK� �6)&6�� LV� UHOHJDWHG� WR�

WKH� WDVN� RI� VHDUFKLQJ� WKH� 6%&6� FDXVDO� OLQNV�� LQ� HIIHFW�

DVVHPEOLQJ� SDUWLDO� SODQV� LQWR� SODQV�� � 7KH� FKLOGUHQ�

JHQHUDWLRQ� IXQFWLRQ� RI� 6)&6� GLIIHUV� IURP� WKDW� RI�)&6� LQ�

WKDW� WKH� FDQGLGDWHV� DUH� QRW� FKRVHQ� IURP� WKH� HQWLUH� VHW� RI�

GRPDLQ�DFWLRQV��EXW�UDWKHU�DUH�FRQVWUDLQHG�WR�EH�RQO\�WKRVH�

GRPDLQ� DFWLRQV� DSSHDULQJ� LQ� DQ� DSSURSULDWH� FDXVDO� OLQN�

HQWU\���,Q�SDUWLFXODU��LI�QRQH�RI�WKH�GRPDLQ�DFWLRQV�DFKLHYH�

DQ\� RI� WKH� WRS�OHYHO� JRDOV�� WKHQ� 6)&6� ZLOO� WHUPLQDWH�

LPPHGLDWHO\� ZLWKRXW� JHQHUDWLQJ� DQ\� FKLOGUHQ�� ZKHUHDV�

)&6�LQ�WKH�ZRUVW�FDVH�GHJHQHUDWHV�LQWR�D�EOLQG�HQXPHUDWLRQ�
RI� DOO� DFWLRQ� VHTXHQFHV� SRVVLEOH� IURP� WKH� LQLWLDO� VLWXDWLRQ���

6)&6� DORQH� KDV� QR� PRUH� SUXQLQJ� DELOLW\� WKDQ�)&6�� � 7KH�

UHVHDUFK�HIIRUW�WKXV�IDU�KDV�MXVW�EHHQ�WR�LQWHJUDWH�%&6�DQG�

)&6�� DQG� WR� HYDOXDWH� WKH� XVHIXOQHVV� RI� GRLQJ� VR�� � ,W� LV�

KRSHG� WKDW� 6HPV\Q� ZLOO� HYHQWXDOO\� SURYLGH�DQ�XVHIXO� WRRO�

IRU�IXUWKHU�VWXG\��

�

Putting It All Together
�

)LQDOO\�� QH[W�JHQHUDWLRQ� SODQQLQJ� V\VWHPV� ZLOO� QHHG� WR�

LQWHUDFW� ZLWK� WKHLU� KXPDQ� XVHUV�� � 7KLV� ZDV� RQH� RI� WKH�

GULYLQJ� PRWLYDWLRQV� IRU� WKH� UHVHDUFK� FRPPXQLW\
V� PRYH�
IURP� DQ� DXWRPDWLF� WR� DQ� DXWRPDWHG� SDUDGLJP�� � :H� SRVLW�

WKDW� DXWRPDWLF� DOJRULWKPV� FDQ� VWLOO� EH� XVHIXO� DV� VXE�

PRGXOHV� WR� WKH� PRUH� HQFRPSDVVLQJ� DXWRPDWHG� V\VWHPV���

0RUHRYHU�� 6%&6� DQG� 6)&6� KDYH� KXPDQ�XQGHUVWDQGDEOH�

DQG�LQWXLWLYH�FKLOGUHQ�JHQHUDWLRQ�IXQFWLRQV��DV�GR�%&6�DQG�

)&6�� VR� LW� EHFRPHV� DOOXULQJ� WKH� SRVVLELOLW\� WR� DOORZ� WKH�
XVHU� WR� YLHZ� DQG� WR� PDQLSXODWH� WKH� VHDUFK
V� LQWHUQDO� GDWD�

VWUXFWXUHV���WKH\�DUH�VLPSO\�SODQ�IUDJPHQWV���,W�LV�RXU�WKHVLV�

WKDW� XVHU
V� RI� DXWRPDWLF� SODQQLQJ� V\VWHPV� DUH� IUHHG� IURP�

SODQQLQJ�FRQFHUQV��DQG�DUH�DEOH�WR�IXOO\�FRQFHQWUDWH�RQ�WKH�

GRPDLQ�PRGHOLQJ�DVSHFWV�RI�WKHLU�DSSOLFDWLRQV��

�

7KH�LQLWLDO�WHVWLQJ�SKDVH�LV�EHLQJ�FDUULHG�RXW�LQ�FRRSHUDWLRQ�

ZLWK� 6HPV\Q¶V� SDUWLFLSDWLRQ� LQ� WKH� �
� �

� ,QWHUQDWLRQDO�

3ODQQLQJ� &RPSHWLWLRQ� �,3&��� KRVWHG� DW� WKH� �����

,QWHUQDWLRQDO� &RQIHUHQFH� RQ� $XWRPDWHG� 3ODQQLQJ� DQG�

6FKHGXOLQJ�� � 7KH� ,3&� VHULHV� KDV� GHYHORSHG� D�
IRUPLGDEOH� WHVWEHG�� DQG� D� ULJRURXV� HYDOXDWLRQ� RI� WKH�

UHVXOWV�LV�IRUWKFRPLQJ��

�

6HPV\Q¶V� SUHOLPLQDU\� UHVXOWV� DSSHDU� VDWLVIDFWRU\�

LQVRIDU�DV�LW�LV�DEOH�WR�VROYH�SUREOHPV�IURP�D�YDULHW\�RI�

GRPDLQV�� � +RZHYHU�� WKH� DOJRULWKP� KDV� WURXEOH� ZLWK�
GRPDLQV� WKDW� KDYH� UHODWLYHO\� OLWWOH� YDULDWLRQ� LQ� WKH�

GRPDLQ� RSHUDWRUV�� � 7KLV� LV� EHFDXVH� WKH� WUDGLWLRQDO�

ZLVGRP�RI�WKH�UHVHDUFK�FXOWXUH�LV�WR�GHVLJQ�D�VHTXHQFH�

RI�SUREOHPV�RI�LQFUHDVLQJ�GLIILFXOW\�LQ�DQ�DUWLILFLDO�ZD\��

E\� LQFUHDVLQJ� WKH� QXPEHU� RI� DFWLRQV� WKDW� FDQ� EH�

LQVWDQWLDWHG�IURP�D�IHZ�RSHUDWRUV��L�H��E\�LQFUHDVLQJ�WKH�

QXPEHU� RI� SUHGLFDWHV� WKH� RSHUDWRUV� KDYH� DW� WKHLU�

GLVSRVDO���&RQYHUVHO\��LQ�6HPV\Q¶V�YLHZ��WKH�SUHGLFDWHV�

DUH� DNLQ� WR� GDWDEDVH� WXSOHV�� � 7KLV� PHDQV� WKDW� LW� LV� WKH�

XVHU¶V� UHVSRQVLELOLW\� WR� PRGHO� WKH� GRPDLQ� LQ� VXFK� D�

ZD\�DV�WKH�SUHGLFDWH�VSDFH�FDQ�EH�HIILFLHQWO\�H[SORUHG���

,QGHHG�� LW� LV� SRVVLEOH� WR� ZULWH� GDWDEDVH� TXHULHV� WKDW�
GRQ¶W� WHUPLQDWH�� \HW� SHRSOH� URXWLQHO\� XVH� 'DWDEDVH�

0DQDJHPHQW� 6\VWHPV� DV� DQ� LQWHJUDO� SDUW� RI� WKHLU�

RYHUDOO� LQIRUPDWLRQ� V\VWHPV�� � $QDORJRXVO\�� 6HPV\Q¶V�

JRDO� LV� WR� VHSDUDWH� WKH� SODQQLQJ� DVSHFWV� IURP� WKH�

GRPDLQ�PRGHOLQJ�DFWLYLWLHV��DQG�WR�GHYRWH� LWV�HIIRUW� WR�
WKH�WDVN�RI�SODQQLQJ���WKDW�LV�� WKH�HIILFLHQW�FRQVWUXFWLRQ�

RI�SODQV�EDVHG�XSRQ�NQRZOHGJH�HQFRGHG�LQ�WKH�GRPDLQ�

RSHUDWRUV�WKHPVHOYHV��UHJDUGOHVV�RI�LQVWDQWLDWHG�DFWLRQV��

References

�������	��

������������������������
����
��� ��� �!�"�#�%$&$��	�!')(*�,+-���/.�0213��
*0&4
5 �	6���7%8&�:9��<;=02>�
����	?/0&4A@B0�6)��7C.�
�0�62

�	�D�D� ��6&���	E&FHG�IKJ L&M�M�N
L�$�$ �

L!����? >��D�PO��Q�%���SR >�

�
TU� 5 � @V�V�	$)$&M��-'WRQ�	�
TV.�?X������� ��6Y+P��

02> 62�
.Q?X������� ��6<Z[
K��\&�]O�� �	?X^&�_���
8&�:9`�<.�
�0&7��V9U��TX�%
H� �%T`� 02� �	?3;=0�� ��T
�V02� 4`��
K�%� 7	��02�"Oa
�T`�X4H��7	�X��?&9U��TX�W?X?X�X6��%��7W����\&\��!�%b�G�b&N���b�c�L��

G ��R�� � �W�����a� dV�������feA�X?X�=�K02� �Aeg� ;W�S�	$&h��	��'&i&+P�V9H.#i�J��j����1
�%\�\&
�0&�W7��/T`0�TX� ����\�\ ? � 7W��T`�X02�/0&4�TX���W02

�%�f\&

02k�� � 6�T`03\&
l02m ?X�%�
�_0�? k&� ��6�8���Oa
HT`��4`�X7	�X�W?�9`��T`�	?X?X� 6��%� 7	����L�FHG&N`c�IKJ`�	n)$&NUL�E�n �

c!��R!> 7������/oD�/�%�&�fR!>�7�� ��� 5 �p�	$)$&$��pqK�B0�02\��%

�%T`� 02�rm �%T 1/�	���
+#02\!NUoa021a�p�%���A�*02TXT`02��N�sa\p+-���	02

�%�t.!

0)k&��

�%q%�A;=02>�
H� �	?-0&4
Oa
HT`��4H�X7	�X�	? 9���T`�	?X?X�X6)��� 7W�*�[�W�=�W�%
l7%� ���%E�J��%b&$&NK�W$&n �

M ��u3�%�Am�� ���A\!��T`�X�vi �v�	$&$�h&�j'W�[�W4H� ���%���%��Tw.Q?����)��� � 6x�W�y�
sa����4`^&� � 6SR
K�%�D�%1/02
H�z4`02
�.Q?����{i2^���TX�!�W�K���K8��zO"9 5 �W6&�%|2� �����
�Wn&F�L&I=J b�h&N�$)h!�

b ��@}��4��K7���� TX|)�B~D�"�	$&n&b��['2(*��TX���C�K�����%��T`� 7��,0&4�i�+P�*9U.#i&8���9U�
.�
l0&7)���*�W�	�_02��� ��6���m!02>�T�O/7�T`�X0��!�:�%����.�?���� �=�{\&\��r�	NH$��
5 02

6)�%�/u/��> 4`���������

h � 5 7%o"�%
H�D02TXTU�-oD���W$&$�b��-'�+Q���g��>)
�
��	�)Tai�TU�%T`��0&4VO39*.�?�������� ��6
�*�W�=�W��
l7���8��D9U�&k&� T`�W�A\!�%\���
K��$�� �}9���T`?l���V02� 4
��0)�p9�� �2> �
TX
����W?-���&�
dP��6�� ���W��
l� � 6YOa\&\�?X�X7W�=T`�X02���D0&4�O"9a�����Yd}�)\���
�T3i�^&�
T`�������P\&\��
L�M�N`G�c��

edelkamp

edelkamp
 52

����� �����	��

��
���������� ������������������� �"!#�$�%�&
�'('����

)+*-,�.0/21�34* 57698�/;:=<?>�@BADC�.E578GF�*�5�H=IKJML%NPO#QSRTC�* OU.
VPWYX[Z"\U]_^`Z�abW-VPcBd?^ecBX�Xf]U^ecBdhg%ikjml#n9op\UXf]�qpZ&^eX�c9Z�X?r

s�c9^YtmX�]vuE^Y\0wxjby{zM^eu_Z&jmc9uU^Yc;r�|(^YWe}4aboB~mX�X?r�zM���b���p�?�mr
���?� VP�TVkqp��q�� ��r�ik]_a��f�#�?�m���v����r��+jmd?jb\vaBr9ikj?Wej?l��B^`aBr����Ea�t�^YXf]fr�lh^Yc9�m\vabcBd�rBl�abWe^ ���7o�}�l�� X[po

¡��¢|	Vk¡¤£¥�[¦�§7^`u�a¨y©j?]_}+a?]_ ªuE_ab\UX&�¢uUn9a?Z�X(nBWea?cBcBXf]x\U��a�\
n�X�]Uy©j?]_l�uh}kXf^Ydm��\UXf �� � uE\0w�WYX	uUXfa?]_Zv�2���«\¬a?WYWej�}�u�a­o9uUX�]
j®Zv�Bj�j�uEX��BX¬�9X�oB]_^euE\U^`Z�_j¯��X°o�uEX[±abc9 ­_�BX�}kXf^Ydm�m\�^Yc
}+X�^ed?��_Xf ª� � �²�«\¬�9amu�]_X�WeX�t�abc9Z�X(abc9a?WYwpuU^eu�amuxa¨nB]_X�nB]_jb�
Z�Xfu_uE^ecBd�\UX[Zv�BcB^`³�oBX�\Uj	Z�j?c�\U]_j?W´uUXfa?]_Zv�2�¬¡��¢|	VP¡�o9uUXfuD_�BX
c9jb\U^ej?c�u7j?yP]_X&y©X�]_X�c�Z&Xf ®abc9 ¯oBn� Ba�_Xf ®t�a?]U^`ab�9WYX[u�_j� pX�\UX[Z"\
X[³�oB^Yt�a?WYXfcm\#u0\va�\UX[u
j¯Z&jmcm]UjmWPuUXfab]vZv�;�(µ4�BXx~mX�w­^e BXfa?u�^Yc
¡´�«|¯VP¡±a?]UX7\U�BXTo9uUX7j?y2l¶oB\Uo9a?W�X�·BZ&Weo9uE^ej?c°]UXfWeab\U^ej?c9u � l�op�
X&·pXfu � ^ec��BX7Z�j?lhnBop\va�\U^ej?c�j?y-]UXfWeab·�X[hnBW`abc9ukabc9 h_�BX�o�uEX
j?y�^ecm_X�]_t�abW`u�j?y�]_X�W`a�·pXf ¸t�a?WYoBX[u��±µ4�9X�c9jb\U^ej?c¹jby7]_X�W`a�·pX[
^ec�\UXf]Ut�abW`u7^Yc¯¡´�«|¯VP¡M^`u�^ec9uUnB^e]UX[(��w�]_X�W`a�·Bab\U^ej?c9u�^Yc®qBabn9a
a?c9 ¬|	X&\U]_^`Z"�¢º{º+�Bµ4�BXD]_X�W`a�·pXf x^Yc�\UXf]Ut�a?Weu4abWeWej�}²¡��¢|	VP¡±\Uj
��abc9 pWeX¬X�·pnB]UX[uUuU^ej?c9u
Z�j?c�_a?^YcB^ecBd­»�r{�vrP¼�r � r X&·pn�j?cBXfc�\U^`a��
_^Yjmc;r�½�¾f¿
¾�À
¾�Á
¾fÂ
r�Ã+¾vÄ+¾_Å+¾"ÆM¾0Ç{r?a?c9 �È�� É�XfWeab·�X[�^ec�\UX�]U�
t�a?W-jby�a�t�ab]_^ea?�BWYXDZ&jmc�_ab^ec9uk\U�9XTlh^ecB^el¶oBlÊa?c9 °lhab·p^Yl�oBl
]_X�W`a�·pX[±t�abWeoBXfu#j?y�\U�9X�t�a?]U^`ab�BWeX?�ËÉ�X�W`a�·pXf Ë^ecm_X�]_t�abW`u#a?]UX
o�uEX�y©oBW´^ec¨uUX�tmX�]vabW{}+a�wpuf�#µ4�9X�w¯a?WYWej�}Ì¡´�«|	Vk¡M_j(�9abc9 BWYX
 BXfZ&]_XfamuEX4X�Í�X[Z"_uPjby;a?Z&\U^ej?c9uPabc9 hc�oBlhX�]_^`Z�abW9nB]UX[Z&jmc9 p^Y\U^ej?c9u
^ec�\U�9X¶Z&jml#n9op_ab\U^ej?c(jby]_X�W`a�·pXf �nBW`abc9uf�4¡��¢|	VP¡�o9uUXfu4_�BX
]_X�W`a�·pX[ª^Yc�\UXf]Ut�a?Weuh_jËZv�BX[Zv~Ë^Yy�c�oBlhX�]_^eZfabW7nB]UX[Z&jmc9 p^Y\U^ej?c9u
a?]UX#a?Zv�B^eX�t�a?�BWYX�^Yc¨a°]UXfWeab·�X[�yÎa?uU�B^ej?c;��É�X�W`a�·pXf (^ec�\UXf]Ut�abW`u
a?WeuUj¬a?WYWej�}�¡´�«|¯VP¡�\Uj°�9abc� pWYX¶WY^ecBXfa?]7a?c9 (cBjmcp��We^ecBXfa?]�X&·��
n9]UX[uUuU^Yjmc9uD^ec¨\U�BXxdmjma?W�jby�a�nBWea?cBcB^ecBd	nB]_j?�9WYXfl���µ4�BX�]_X&�
W`a�·pX[�^Yc�_X�]_t�a?Weu+abW`uUj�abWeWej�}ªa?c¬X[a?uUw# pX�\UX[Z"\U^ej?c°jby2}��9X&\U�9X�]
ahc�oBlhXf]U^`Z�a?W-d?jma?W�j?]�c�oBlhX�]_^`Z�abW;uUoB�Bdmjma?W�^`u�amZv�B^YXft�ab�BWeXD^Yc
a#]_X�W`a�·pXf ¬yÎa?uU�B^ej?c;�
¡��¢|	Vk¡­Z�]UX[a�_Xfu�abWeWBdm]UjmoBc9 #^Yc�u0\vabc9Z�Xfu�j?y�jmn�Xf]_ab\Uj?]vu{��X��

y©jm]UX
uUXfa?]_Zv�°��Xfd?^ec9u��P�«y�_�BX� pj?l�a?^Yc(pX[uUZ�]U^enp\U^ej?c� pj�Xfu�cBjb\
uUn�XfZ&^Yy©w¬jmn�Xf]_ab\Ujm]+ po9]_ab\U^ej?c9ufrB¡��¢|	VP¡Ëa?u_uEo9l#X[u+\U�9ab\4\U�BXfw
a?]UX�a?WYW�oBcB^Y\0w�a?c9 �\U]_Xfab_u4_�BX� Bj?l�ab^ec	a?u�a�\UX�lhn�j?]vabW2 Bjb�
l�a?^Yc;�
ÏÌÐ9Ñ�ÒÎÓ¸Ô;ÕfÖpÕ[×�Øk¡��¢|	VP¡	\U]_Xfa�\vu nB]_j?n�jmuU^¥_^Yjmc9u abc9 �d?]_j?oBc�
n9]UX[p^eZfa�_Xfu
a?uDc�oBlhXf]U^`Z�a?W�t�a?]U^`ab�9WYX[u7}�^Y\U�¸ pjml�ab^ec¹��¦B¾��?�m�
�%}+j?]_We ¯u0\va�\UX�ÙM^ec¨a¬cBjp pXhÚ�^ec®\U�BXhuEX[ab]vZv�(\U]_X�X#jby+¡��
|¯VP¡Ë^eu+_�BXT\UoBnBWeXh¿ªÛP¾UÜ�¾UÝPÀ
rp}��BXf]UXTÝP^`u+\U^elhXDuE_a?lhn°j?y
Ù�r�ÛÞ^euT_�BX�uEX�\Dj?ykc�oBlhX�]_^`Z�abW t�ab]_^`ab�BWeX&�«t�abWeoBX�n�ab^e]_ufr;abc9
Ü°^`u�\U�9X�a?Z&\U^ej?c	a?nBnBWe^YX[�\UjxdmX�cBXf]_ab\UX�Ú¸��µ4^elhX¶u0\vablhn	j?y
a#}+j?]_We °u0\va�_X¶Ù±^`u+\U�BX
X[ab]_WY^eXfuE\+\U^el#X�ab\�}��B^`Zv��a?c�amZ"\U^ej?c
Zfabc¸��X°a?nBnBWe^YX[¸^Yc�Ù4�¯¡��¢|	Vk¡SabnBnBWe^eXfu¶amZ"_^Yjmc9u¶uUj(\U��a�\
_�BX�w�u0\vab]U\�a�\4\U�BX
X[ab]_WY^eXfuE\�n�j�uUuU^e�BWYXT_^YlhXfuf�

ßxà{à ÒâáÎã?ÖBä{Òâ× ß ã?ÕfáÎÐ�å{æ?Ø�µ4�BXPZ�j?c9 B^¥_^Yjmc9u;y©jm]�a?nBnBWe^eZfab�B^eWY^Y\0w
jby
abcMa?Z&\U^ej?cªç�è�^ec�a¨cBjp pX(é�}�^Y\U�M}+j?]_W` ËuE_ab\UX¯Ù%ab]_X?ê
� ^ � abWeWPn9]UX[Z&j?c� p^¥_^Yjmc9u�j?y�ç�è´_�9a�\#cBX�X[¨\Uj®��X¬\U]_oBX¬ab\�^Y_u
u0\vab]U\�j?]#X�c� ±n�j?^ecm\vu#l¶o9uE\#��X�uUab\U^`u0ë9X[±��w¹Ûìjby7Ù4r � ^Y^ �
abWeW�nB]_XfZ�j?c9 p^Y\U^ej?c�u�jby�ç è \U�9ab\°cBXfXf �\Uj¹��X¯\U]_oBX	j�t?Xf]x^Y_u
X�c�\U^e]UX¬^Yc�\UXf]Ut�a?Wkl�o9u0\habW`uEj¯��X�uUab\U^`u0ë�Xf ¸��w±Û¤j?y7Ù4r´abc9
� ^e^Y^ � X&Í�XfZ"\vu jby�ç�è9 pj7c9jb\�Zv�9abcBdmXP_�BX4t�abWeoBXkj?y�a?c�w
��j�j?WeXfa?c
j?]+c�o9l#Xf]U^`Z�a?W�t�a?]U^`ab�9WYXT^Yc°\U�9XTn9]UX[Z&j?c� p^¥_^Yjmc9u+j?]4X&Í�XfZ&_u4j?y
abc�wxa?Z&\U^ej?c°\U�9ab\�ç�è-j�t?Xf]UW`abn9u+}�^Y\U�(abc� ¬t�^`Z&X
t?Xf]_u_aB�
Ô-Õ[ÖpÕfáâã?ÖBÒâÒ©íïî�ð�Õf×�ñ ß ãbÕfáâÐ�å{æmØ�º9j?]#XfamZv�±a?Z"_^Yjmc¹ç�èârP¡��
|	VP¡ÞZ&j?lhnBoB\UXfu¬\U�9X¨uUX&\�jby�t�a?]U^`ab�9WYX[uxoBn� Ba�_Xf ���wª\U�BX
a?Z"_^Yjmc®a?c9 (_�BXxuEX�\Tj?ykt�ab]_^`ab�BWeXfu7\U��a�\�ab]_X¶]_X&y©Xf]UXfc9Z&X[��w
\U�BXDa?Z&\U^ej?c;��µ4�BX[uEX
uUX&_u4a?]UXD pX�c9jb\UX[x��w°ò � ç�è � a?c9 ¬ó � ç�è �
]UX[uEn�XfZ&\U^et?X�Wew?�%µ4�BXfuUX®uUX&\vu�Z&j?c�\vab^ecMnB]UX[p^`Z�a�_Xfu�abc9 ² p^euE�
Z&]_X&\UXht�ab]_^`ab�BWeXfuf�#�7u�abc¨X�·pa?lhnBWYXmr;WeX&\
\U�9X�nB]UX[Z&jmc9 p^Y\U^ej?c9u
jby+ç�è ��XxÜ�¾_ô¶abc9 ­õxÀï�?¦?¦B¾_ö¬¿÷�[¦?¦9r-}��BX�]_X#Ü¯abc9 ¨ô¶a?]UX
nB]Ujmn�j�uE^Y\U^ej?c�uPabc� ¬õ�¾_ö
ab]_X7 p^`uUZ�]UX�\UX7t�a?]U^`ab�9WYX[u�� ø;X�\+_�BXTX&yù�
y©XfZ"\vu�j?y�\U�B^`u7amZ"_^Yjmc(��XhÅ Ü�¾_ú9¾_õD½ � õ+»Ëö7û¹�b¦ � r�}��BX�]_X¶ú
^eu
a�nB]_j?n�jmuU^¥_^Yjmc;�h�¢c­\U�B^`u�Z�amuEXmr2ó � ç�è � ½Þ�[Ü�¾_ô�¾Uõ�¾_ö?�habc9
ò � ç�è � ½���ú9¾_Ü�¾Uõ����2�¢chd?XfcBX�]vabW�r?abc�w�t�a?]U^`ab�BWeXk\U�9ab\PabnBn�Xfa?]_u
^Yc�nB]UX[Z&jmc9 p^Y\U^ej?c9u�j?] X&Í�XfZ&_u{jby�abc�amZ"_^Yjmc�abc� �}��B^`Zv�¶^`u{cBjb\
oBn� 9a�\UX[¬��wh_�BX
a?Z"_^Yjmcx^`u�a¶]_X&y©Xf]UXfc9Z&X[�t�ab]_^ea?�BWYX7y©j?]+_�9a�\
a?Z"_^Yjmc;�Dµ4}kj�a?Z"_^Yjmc9uTç�ü+a?c9 	çfý#a?]UX#u0\va�_^eZfabWeWYw�l¶oB\Uo9a?WYWew
X&·BZ&Weo9uU^YtmX	^Yc�¡��¢|	VP¡þ^¥y¶jmcBX¯jm]¬lhj?]_X¯j?y
\U�BX®y©j?WeWej�}�^YcBd
\U�B]_X�X
Z&jmc9 p^Y\U^ej?c9u�ab]_XDu_a�_^euEë9X[-ê � ^ �
� ó � ç ü �;ÿ ò � ç ý �E���½���r
� ^e^ �¯� ó � ç ý �4ÿ ò � ç ü �U���½���r � ^Y^e^ �®� ò � ç ü �kÿ ò � ç ý �U���½����
q�_ab\U^`Z�abWeWew�l�op\Uo�abWeWYw�X&·BZ�WYo9uU^et?X�amZ"_^Yjmc9u7a?]UX¶n�Xf]Ul�abc9X�c�\UWew
l¶op_o9abWeWYw¬X&·BZ&Weo9uU^YtmXDa?c9 �Z�abc9cBjb\�j�t?Xf]UW`abn2�
���-ð{á
	BÖBÒâ×�å�ÕËÔ-Õ[ÖpÕf×�æmØ­ó¤^`u#\U�9X	uEX�\xjby7t�a?]U^`ab�BWeXfu#]_X&y©Xf]E�
X�c9Z�Xf °��w°j?cBXDjm]�l#jm]UX
amZ"\U^ej?c�u�abc9 (òï^eu+_�BX¶uUX&\�jby t�ab]_^¥�
ab�BWeXfu
o9n� Bab\UX[¸��w®jmcBXxj?]�lhj?]_Xxa?Z"_^Yjmc9uf�	µ4}kj	uE_ab\UXfu��
abc9
�fè4a?]UX°Xf³�oB^et�a?WYXfc�\#^Yy�_�BX�t�a?WYo9Xfu#jby7a?WYW4t�ab]_^`ab�BWeXfu�^Yc
ó ÿ òïa?]UXDu_ablhXD^Yc�\U�9X¶ÛÌZ�j?lhn�j?cBXfcm\�j?y��¶abc9 �� è �´µ4�B^`u
 pX&ë9c9^¥_^Yjmc#j?y�X[³mo9^Yt�abWeX�c�\´uE_a�_Xfu´a?WYWej�}�u ¡��¢|	VP¡¯\Uj
Z�j?c�\U]_j?W
uEX[ab]vZv�x��wxcBjb\�t�^`uE^Y\U^ecBdhl¶oBWY\U^enBWeXD}kjm]UW` ¬uE_ab\UXfu+_�9a�\� p^YÍ�X�]
j?cBWew	^ec®_�BX�t�abWeoBX�jby+t�ab]_^ea?�BWYX[uTy©]Ujml ò�û¹ó#�xµ4�BX�t�ab]_^¥�
ab�BWeXfu�^Ycxò�û�óM pj7c9jb\´a�Í�XfZ&\{_�BX4abnBnBWe^`Z�ab�9^YWe^¥\0w
j?y�amZ"\U^ej?c�u��
ikj?c9uU^e BX�];_�BXPt�a?]U^`ab�BWeX�_jb_a?W¥��y©oBXfW¥�¢Z&jmc9uEo9l#X[
 pX�c9jb\U^ecBd�\U�BX
\Ujb\vabW�y©o9X�W4Z&j?c�uEoBlhX[¨��w¨a�n9a?]E_^ea?WPnBW`abc;r{^ec¸\U]vabc9uUn�j?]U_a��
\U^ej?c	Wej?dm^euE\U^`Z�u7 pj?l�ab^ec;�Dµ4�B^`u7t�a?]U^`ab�BWeX�^`u�c9jb\D]UXfWYXft�a?c�\�\Uj

edelkamp
53

amZv�B^eX�t�^Yc9d¯abc�w¨nB]_XfZ&jmc9 p^Y\U^ej?c±j?y7abc�w¸a?Z&\U^ej?c;�¸µ4�B^`u#t�ab]_^¥�
a?�BWeX	��XfWYjmcBdmux\Uj�ò �9op\°cBj?\¬_j¹ó#��µ4�B^eu°t�ab]_^ea?�BWeX	Z�abc
��a�t?Xx^ecpë9cB^Y\UX�cBjmcp�«cBX�d�a�\U^et?X�t�a?WYoBX[u�uU^ec9Z&X�^YcBë9cB^Y\UX��9^Ydm��_u
a?]UX¶n�j�uUuU^Y�9WYXm���+w°cBj?\TZ�j?c9uU^e BX�]_^YcBdxuUo9Zv�	t�a?]U^`ab�BWeXfu�^Yc(_�BX
uE_ab\UXhXf³�oB^et�abWeX�c9Z�X#\UXfuE\fr{¡��¢|	VP¡�Z&jmcm_]UjmWeu7_�BX�uE^���Xhjby+^¥\vu
uUXfa?]_Zv�¬\U]_X�Xm�
Ô2×�ÖpÑ�ã�� ß Ò���Ð9Ñ�á©Õ��
	�ê´¡��¢|	VP¡ªZ&jmc9 po9Z&_u�y©j?]_}+a?]_ �u0\va�_X&�
uUn9amZ&X²uUXfa?]_Zv�=^ec÷}kXf^Ydm�m_Xf ÷� � uE\0w�WeX?� µ4�9X�}kXf^Ydm��\UXf
t�a?]U^`abc�\°j?y�� � o9uUXfu¬\U�BX­y©jmWYWej�}�^Yc9d¹n9ab\U��Z�jmuE\°X[³mo�a�\U^ej?c
� � é � ½ � �
û
� �����-� é � »�� ����� é � ¾U¦¸Á�� Á��?r }��BXf]UX
�-� é �]_X�n9]UX[uEXfcm\vu�\U�BX�Z�jmuE\ j?y9_�BX�n9a�_�#y©]UjmlS\U�BX�]_j�jb\�cBjp pX
j�c9j� BX7é�rBa?c9 ��BX �2� é �]_X�nB]_XfuUX�c�\vu´_�BXDXfuE\U^elhab\UXTjby;_�BX
Z�jmuE\Tj?y´\U�9XhZv�9Xfabn�XfuE\Dn9a�_�	y©]_j?l¤é±_j°dmjma?Wâ�
�¢c­¡��¢|	VP¡ r
�BX�c9j� BXfu´^echy©]^YcBdmX�ab]_X�uUj?]U\UXf hamZ�Z&jm]_ B^YcBdD_j�t�abWeoBX�j?y�_�BX
� y©oBc�Z"\U^ej?c2�{µ4�BXPcBjp pXP}�^Y\U��Wej�}+XfuE\ � �â� t�a?WYoBXk^eu2X&·pn9a?c9 pXf
ë�]_uE\f���«y l¶oBWY\U^enBWeX�cBjp pX[u4�9a�t?XT\U�9X�uUa?l#XDt�abWeoBX
j?y � r�_�BX�c
_�BXDcBjp pX
}�^Y\U��WYj�}+XfuE\4 BX�np_��^`u4X&·pn9a?c9 pX[xë9]vuE\f� �«y{c9j� BXfu
}�^Y\U�¯\U�BX#Wej�}kX[u0\Tt�a?WYo9X¶jby � �9a�t?X
�BXhuUa?l#X# pX�nB\U�;r��BX�c
_�BX
cBjp pXD_�9a�\�^`u4d?XfcBX�]va�_Xf °Xfab]_We^YXf]+^`u4X&·pn9a?c9 pX[¬ë�]_uE\f���
c9j� BX#^`uTd?XfcBX�]va�_Xf (��w	abn9nBWYw�^ecBd�j?cBWew(j?cBXha?Z&\U^ej?c;�#q�^Yc�Z&X
l�oBWY\U^enBWYX�amZ"_^Yjmc9u{lha�w
��a�t?Xk\U�BX�u_ablhX4u0\vab]U\U^ecBdT\U^el#Xmr?Z&jmcp�
Z�oB]_]UXfc9Z&wh^`ukn�jmu_uU^Y�BWeX?����c°a?Z&\U^ej?c�ç�è-Z�abc°u0\vab]U\4 po9]U^ecBd�_�BX
^ec�\UXf]Ut�abW�jby´j?\U�BXf]7a?Z&\U^ej?c9u�\U�9ab\Ta?]UX�c9jb\7uE_ab\U^`Z�abWeWew°l�op\UX�·
}�^Y\U�¨ç�è�r-l�ab~�^Yc9d�Z�j?c9Z�oB]U]_X�c�Z&w�n�j�uUuU^e�BWYXm��¡´�«|	Vk¡M_X�]_l#^Y�
c�a�\UX[u�}��9X�c(_�BX�]_X¶^`u7axcBjp pX¶é±uUo9Zv�(_�9a�\TX�t?Xf]Uw�uUoB�Bd?j�abW
^`u+\U]_oBX
^ec�\U�BX¶Û%Z&jmlhn�jmcBX�c�\�jby�\U�BX
}+j?]_W` °uE_ab\UXD^Yc�é��
�°×�ÒÎÖpñ;×�Ó à ÒÎÖ9å�å{áÎå�����Ñ�Ö à ��������� ��ê�µ4�BX¸c9jb\U^ej?c�j?y
É�¡"! }+amuh^Yc�_]Ujp po9Z�Xf ª^ec�º ºïnBW`abc9cBX�]¯£ ��§«��z®X­ pX�cBj?\UX
_�BXDd?j�abW�jby a�n9Wea?cBcB^ecBdhnB]Ujm�BWeX�l÷��w$#Ì^Yc°\U�BX
]_XfuE\4jby2_�BX
n�abn�X�][� ��uUoB�Bd?j�abW�y©]Ujml�#S^`u+a?c¬X�·�n9]UX[uUuU^Yjmc�y©]_j?l%#h�´��c
É�¡"!G^`u�Z&jmc9u0_]Uo�Z"\UX[±��w±º º�a?u_uUoBlh^YcBd®\U��a�\#\U�BX(pXfWYX�\UX
X�Í�X[Z"\�We^`u0\vu�jby´amZ"\U^ej?c�u�ab]_X
X�lhnp\0wm�4µ4�9X�cBjb_^Yjmc(jby�nB]_j?n�jb�
uU^Y\U^ej?c	WeX�tmX�W{^euT]_X�nBW`a?Z�Xf (��w�\U�BX#cBj?\U^ej?c	j?y´t�a?]U^`ab�9WYX�WYXft?X�W�r
^ec(j?]v pXf]�\Uj¬Z�j?c9uE\U]_o9Z&\�abc	É�¡&!�y©jm]�lhj?]_X
X&·pnB]_Xfu_uU^YtmXD Bjb�
l�a?^Yc9uf�$'�\U�±amZ"\U^ej?c¨WeX�tmX�W´jpZ�Z�oB]vuD��X�\0}kXfX�c('�_�¸t�ab]_^ea?�BWYX
WeX�tmX�W;a?c9 $'�»ª�7\U�BX
t�ab]_^`ab�BWeX7WeX�tmX�W���¡��¢|	VP¡�Z&jmc9u0_]Uo�Z"_u4a
uUX�]_^`abW�]UXfWeab·pXf xn9Wea?cBcB^ecBdhd?]vabnB�;� ¡��¢|	Vk¡ËuE\Ujm]UX[uka?c°^ec�\UX�]U�
t�a?W���jmoBc9 pX[®��w®lhab·p^Yl�oBlìabc� ¯lh^ecB^Yl�oBl]UXfWeab·�X[t�abWY�
o9Xfu4y©jm]�Xfa?Zv��t�ab]_^ea?�BWeX7^ec�Xfa?Zv��t�ab]_^ea?�BWeXTWeX�tmX�W��´��t�ab]_^ea?�BWYX
WeX�tmX�W�^eu7axuEX�\�jby�¿�)�¾f£ *�'«é �) � ¾+*�Ü-, �) � §´À�\Uo9nBWYX[u�r�}��BXf]UX
.'«é �) � a?c9 (�Ü/, �) � ab]_X¬lh^ecB^Yl�oBl�abc� ±l�a�·p^el¶oBl]_X&�
W`a�·pX[¸t�abWeoBXfu�jby�t�ab]_^`ab�BWeX0)��­µ4�BX�uE^���X°jby�a?c±^Yc�_X�]_t�a?Wk^`u
lhjmcBjb_j?cB^`Z�a?WYWew¯^ec9Z&]_XfamuE^ecBd���µ4�BX¬^Yc�\UXf]Ut�a?W�y©j?]#a(t�ab]_^ea?�BWYX
)�è-^ec1'´\U��t�ab]_^`ab�BWeX7WeX�tmX�W;^`u4j?�B_ab^ecBX[¬��w¬o9n� Bab\U^ecBd�^Y_u�^ecp�
_X�]_t�abW4^Yc¹\U�BX1'kû��°\U�9X°t�ab]_^`ab�BWeX¬WeX�tmX�W4}�^¥_�¹_�BX�X&Í�XfZ"\vu
j?y4\U�BX�a?Z"_^Yjmc¸^Yc±\U�BX0'kû²��_�¹a?Z&\U^ej?c¸WeX�tmX�W��	ºBj?]¶X&·Babl#�
n9WYXmr{WeX&\�\U�BX°t�abWeoBXxjby�t�ab]_^`ab�BWeX0)-2h^ec¨\U�9X¬}+j?]_We ¨uE_a�_X¬j?y
a®cBjp pX�é²��X��9�±µ4�BXfc¹_�BX�^Yc�\UXf]Ut�a?Wky©jm]3)-2¬^ec¹_�BX�ë9]vu0\
t�a?]U^`ab�BWeX¬WeX�tmX�W4^ec¹_�BX(É�¡"!¤ab\�é�^eu�£ �9r �b§«�±�«yTa?cËamZ"\U^ej?c
^ec9Z�]UX[a?uU^YcBd4)-27��w¯�[¦#^eu�^ec9Z�WYo9 BXf �^Yc�_�BX
ë9]vu0\�amZ"_^Yjmc°WeX�tmX�W
j?y-\U�BXDÉ�¡&!#r?_�BX�c¬\U�BX7^Yc�\UXf]Ut�a?W9y©jm]")-2�^Yc�uEX[Z&j?c� �t�ab]_^ea?�BWYX
WeX�tmX�W;^`u�£ �9re���?§��´�«y�abc(amZ"\U^ej?c(pX[Z&]_XfamuE^ecBd4) 2 ��w��?¦�^`u4_�BX�c
^ec9Z�WYo9 BXf (^ec�\U�BX#uEX[Z&jmc9 (a?Z&\U^ej?c�WYXft?XfW2jby´É�¡&!#r9_�BX�^ec�\UX�]U�

t�a?W y©j?]5) 2 ^Yc­\U�9X�\U�B^e]v ®t�a?]U^`ab�BWeXhWYXft?XfW�^eux£ �v�f�Bre���?§����«y�abc
a?Z"_^Yjmc±a?u_uE^ed?c9^YcBd­��\Uj6) 2 ^`u�_�BX�cË^Yc�Z&Weo9 pXf ¹^Yc±\U�BX�cBX&·�\
a?Z"_^Yjmc®WeX�tmX�W´j?y4É�¡"!#r-_�BX�^Yc�_X�]_t�a?W�y©j?]7)-2h^Yc¨_�BXhy©j?oB]U\U�
t�a?]U^`ab�9WYX�WeX�tmX�W ^`u7uE\U^eWYW�£ �_�[�Bre���?§�r�uE^ec9Z�X#�¬^eu7^Yc¯\U�BXh^ec�\UX�]_t�abW
£ �v�f�9rY�f�b§«�ªµ4�9X	^Yc�_X�]_t�a?Weu#y©jm]xt�ab]_^ea?�BWeXfuhl�ab~mX�^Y\¬X[a?uUw¸\Uj
Z&j?lhnBoB\UX
]_X�W`a�·pXf �^ecm_X�]_t�abW`u4y©j?]7X&·pnB]_Xfu_uE^ej?c9u�a?c9 (Zv�BX[Zv~¬^Yy
\U�BX�X�·�n9]UX[uUuU^Yjmc9uDab]_XxuUab\U^`u0ë�Xf ®^Yc±a�]_X�W`a�·pXf ¯yÎa?uU�B^ej?c¨^Yc¸a
t�a?]U^`ab�9WYXxWeX�tmX�W��­º9j?]#X&·BablhnBWeX?rPWYX�\¶\U�9X°]_X�W`a�·pXf ±^Yc�\UXf]Ut�a?Weu
y©j?]�t�ab]_^ea?�BWeXfu8) 2 ¾+):9
��X¬£ �«�9r ��§�abc9 ¨£ ����r �b§��+µ4�BX
^ecm_X�]_t�abW;j?y
�) 2 »
):9 � ^`u#£ �+;�r{�f�b§���µ4�9X¶^ecm_X�]_t�abW`u�y©j?]�) 2 �):9br8<>=

<@?
r�abc9

) 2 û):9Tab]_X�y©j?o9c9 x^ec�a�uE^elh^YW`ab]kyÎa?uU�B^ej?c;��µ4�BXT^ecm_X�]_t�abW`uPj?y
Z&j?lhnBWeX&·(ab]_^Y\U�BlhX&_^eZ¶X&·pnB]_Xfu_uE^ej?c�u�ab]_X
y©jmoBc9 	o�uE^ecBd¬^ec�\UXf]E�
t�a?Weu#j?y7^ec9 p^et�^` po9a?W�t�ab]_^ea?�BWYX[uhabc9 ¹j?n�X�]va�\Ujm]hnB]UX[Z&X[pX�c9Z�X?�
ºBj?]+X&·Ba?l#n9WYXmrm_�BXD]UXfWeab·pXf �^ec�\UX�]_t�abW�y©j?]A) 2 �):9 �):B �)DCT^`u
y©j?oBc9 �y©]UjmlÌ]_X�W`a�·pXf h^ec�\UXf]Ut�abW`u´j?yE) 2 �):9 �):B�abc� F)DC?��µ4�BX
^Yc�\UXf]Ut�a?W?jbyG)-2 �) 9 �) B ^`u;y©jmoBc9 Dy©]_j?l�\U�9XP^ecm_X�]_t�abW`u;jbyH)-2 �) 9
abc9 I) B ��µ4�BX�^ec�\UXf]Ut�abW`u{y©j?]Pt�a?]U^`ab�9WYX[u�abc9 #X&·pnB]_Xfu_uU^Yjmc9u Z�abc
��XhZ&jmc9uE^` pXf]UX[¯a?u7_�BXh^Yc�\UXf]Ut�a?Weu7jby+]UXfWeab·�X[(t�abWeoBXfuf�¶µ4�B^`u
^euk��X[Z�a?o9uEX�\U�BjmoBd?�°¡��¢|	VP¡±Z�j?c9uU^` pX�]vuPam B -r pX�WeX&_X7X�Í�X[Z"_ufr
^Yc9Z�]UX[a?uUX?r-a?u_uU^Ydmc®abc� ® pX[Z&]_XfamuEX#X&Í�XfZ&_uD^ec­Z�j?lhnBop_^YcBd�^ecp�
\UX�]_t�abW`u�r�^Y\4^ed?c9j?]_Xfu�_�BXD^Yc�_X�]va?Z"_^Yjmc9uk��X�\0}kXfX�c°amZ"_^Yjmc9u���q�j
uEjml#X¶jby´_�BX�t�a?WYoBX[u�^ec(_�BX�^ec�\UXf]Ut�abW`u7lha�w���X�^elhn�j�uUuU^Y�9WYX
\Uj�a?Zv�B^eX�tmX?�
�¢c�\UXf]Ut�a?Weu�j?y�X&·pnB]_Xfu_uE^ej?c9u�^Yc	n9]UX[Z&j?c� p^¥_^Yjmc9u�jm]�d?j�abW2a?]UX

y©j?oBc9 hjmcBWew¶_j
\UX[u0\+^¥y;nB]_XfZ�j?c9 B^¥_^Yjmc9u�j?]kd?j�abW9a?]UX�amZv�B^YXft?X[
^Yc	a�]_X�W`a�·pX[¬yÎamuE�9^Yjmc;���¢c�\UX�]_t�abW`u�y©jm]�X&·pnB]_Xfu_uE^ej?c�u�l�ab~?X¶^¥\
Xfa?uUw�\Uj(Zv�BX[Zv~(^¥y�a?Z&\U^ej?c9u
a?]UXhabn9nBWY^`Z�a?�BWeX#^ec¨É�¡"!Êabc9 ­^Yy
d?jma?W�^eu4_]Uo9XT^ec(É�¡"!#��ºBj?]�X�·BablhnBWeX?rp_�BX
nB]_XfZ&jmc9 p^Y\U^ej?c�j?]
uEoB�9d?jma?W �)-2P»J) 9 � ½��b¦#^eu�\U]_oBX�^ec�É�¡"!ï^¥yP�b¦#We^YX[u�^ec�\U�BX
^Yc�\UXf]Ut�a?W�jby8)-2�»K) 9 ��q�^elh^YW`ab]_Wew?r�\U�BX�X�·�n9]UX[uUuU^Yjmc�¼�uUoB�Bdmjma?W
)-2�¿%) 9 ^eu#uUab\U^`u0ë�Xf ¸^ec¹a(t�ab]_^`ab�BWeXxWeX�t?XfWk^ec¸_�BX�É�¡"!�^Yy
*�'«é �)-2 � ¿
*�Ü/, �) 9 � ^`u�uUab\U^`u0ë�Xf °^Yc�\U�9X
t�a?]U^`ab�9WYXDWeX�t?XfWâ�
¡´�«|	Vk¡ªZ&j?c�u0_]Uo9Z&_u�É�¡"!ïy©j?]�axcBjp pX���w�a?nBnBWew�^YcBdxamZ"�

\U^ej?c9u2^Yc¶y©j?]_}+a?]_ D p^e]UX[Z"_^Yjmc�abc9
��w
Z&jmlhnBop\U^ecBdTa?Z"_^Yjmc�abc9
t�a?]U^`ab�9WYX°WYXft?X�W`ufr�oBc�\U^eW4\U�BX�^Yc�_X�]_t�a?Weu#j?y�t�ab]_^ea?�BWYX[u¶u_a�_^euEy©w
abWeW-X&·pnB]_Xfu_uE^ej?c9u+^ec�\U�BX
dmjmabW-^ec(uEjmlhXTt�a?]U^`ab�BWeXDWYXft?XfW-j?]�cBj
t�a?]U^`ab�9WYX-L u ^ec�\UX�]_t�abW9Zv��abcBdmXfufrb}��B^`Zv�BX�tmX�]�jpZ�Z�oB]_u´Xfab]_We^YXf]f���«y
uEjml#X�uUoB�Bd?j�abW�^`uhcBjb\¬amZv�B^eX�t?X[±^ec�\U�BX	É�¡&!¤j?yDa­cBjp pX
é�r2¡��¢|	VP¡�uUX&_u ��� é � _j6MKabc9 ­~mX�X�n�u�_�BX�cBjp pX�^ec­\U�BX
nB]U^ej?]_^Y\0w�³�oBXfoBX?�
é¸^`uT��X#X&·pn9a?c9 pXf ®a�yù_X�]
abWeW{uE_ab\UX[u7}�^Y\U�
ë9cB^Y\UX ���â� t�abWeoBXfu�a?]UXDX�·�n�abc9 pX[-�
�¬×�ÒÎÖpñ;×�Ó à ÒÎÖBåkê2É�XfWeab·pXf DnBW`abc9u{ab]_X´o9uUXf
\Uj7Z�j?lhnBop_X ���â�
t�a?WYo9XfuDy©jm]¶cBjp pX[u
��w­¡´�«|	Vk¡ r;We^Y~mXx|(X&_]U^`Z"�¢º ºÌ£N;[§«r´qpabn9a
£ ��§��TÉ�X�W`a�·pXf 	nBWea?c(y©j?]Daxc9j� BX¶é¸^`u�y©jmoBc9 (��w(¡��¢|	Vk¡M^Yc
\0}kj7nB�9a?uUXfuf�2�¢c�ë9]vu0\ nB�9amuEXmr�^¥\]_X�lhj�t?X[u2^e]U]_X�WeX�t�a?cm\ a?Z&\U^ej?c9u
y©]Ujml \U�9X¬É�¡"!Þj?y+é��(µ4�B^`u
]_X�lhj�t�abW´WeXfa�tmXfu
a(uUoB�Bd?]vabn9�
jbyPÉ�¡&!%}�^¥_�®d�abn9u � uUj?lhX�amZ"\U^ej?c¯WYXft?X�W`uTab]_X¶X�lhnp\0w � �T�¢c
\U�BX�uUXfZ�j?c9 �nB�9amuEXmr9¡��¢|	Vk¡�Z�j?c�t?Xf]E\vuk\U�B^`u�uUoB�Bdm]_a?nB�°^ec�\Uj
a¨]UXfWeab·�X[Ë\UX�lhn�j?]vabW�n9Wea?cM��w�nBo9uU�B^ecBd¹amZ"\U^ej?c�u��9a?Zv~¹\Uj
\U�BXDXfa?]UWe^eXfuE\+n�jmu_uE^e�BWeX�_^YlhXmrBX�c9uUoB]_^Yc9d¶_�9a�\�uE_a�_^eZfabWeWYw�l�op�
\UX&·¹amZ"_^Yjmc9u� Bj®cBj?\#j�tmX�]_Wea?n;�¨¡��¢|	VP¡�Z�j?c9uU^` pX�]vu�amZ"_^Yjmc
 poB]va�\U^ej?c�ukjmcBWewx^Yc�_�BX�uEX[Z&jmc9 ¬n9�9a?uUX?�
µ4�BX¹]UXfWeab·�X[�nBW`abcSy©jmoBc9 S��w�nB�9amuEX��¹^eu­uEXf]U^`abW����«\

edelkamp
54

¡Pø�� ¡kø ��� µ�� �7¡"! � !D¡&! i+V � �7¡&!
qpa?n9a � � �

ø�¡"! � � �

|(�0¡kq �?r9�BrB� � � � �

µ�¡´� � � �

|	º º �?r9� � � � � � �

º º � � � � �

����¡	�T¡ �?rB� � � � � �

¡´�«|	Vk¡ �?r9�BrB� � � � � � � �

º{^YdmoB]UXh�mê V´·pnB]UX[uUuU^et?X�c9Xfu_u´y©X[a�\Uo9]UX[u4�9abc9 BWYX[°��wxt�a?]U^ej?o9u4n9Wea?cBcBX�]vuky©]Ujml��?¦?¦m��nBW`abcBcB^ecBdxZ�j?lhn�X�\U^Y\U^ej?c;�
�#ê��´Xfu � �9a?c9 pWeXf � �

^`uhn9a?]_a?WYWeX�We^ �fXf ¹^YcªnB�9amuEX(�®��X[Z�a?o9uEX�_X�lhn�jm]_a?W�nBW`abcBcB^ecBd
n9]Ujm�BWYXfl�u¹dmX�cBXf]_a?WYWewï^ec�t?j?Wet?X²lha?~?X[uEn9a?c÷lh^YcB^elh^ �[a�_^Yjmc;�
|¯ab~?X[uEn�abc¶j?y�n�ab]vabWeWYXfWY^���X[�]_X�W`a�·pXf ¶nBWea?chjby�c9j� BX�é°Z�a?c���X
a���X&\E_X�]�X[u0_^Yl�a�_XDjby2_�BXDl�ab~?X[uEn�abcxj?y2\U�9XTjmnp\U^el�abW-nBW`abc
�9a�\´amZv�B^YXft?X[u2�BX4d?j�abW�y©]Ujml�cBjp pX4é�r�_�9abc�\U�BX�l�a?~?XfuUn9a?c
j?y´uEXf]U^`abW;]_X�W`a�·pX[°n9Wea?c;��µ4�BX�XfuE\U^el�a�_Xfu�j?y�_�BX¶l�a?~?XfuUn9a?c
j?y�j?np_^Yl�abW�nBW`abc�y©]_j?l�é¨Zfabc(��X¶��X&\U\UX�]T^Yy�uE_ab\U^`Z�a?WYWew°l�op�
X&·ªa?Z"^Yjmc9uh pj¸cBj?\hj�tmX�]_Wea?n¹^ec¹_�BX(]_X�W`a�·pXf ËnBW`abcªa�\xé��
��X�c9Z�X7j�tmX�]_Wea?nhjby2uE_a�_^eZfabWeWYwhl�op\UX�·�amZ"_^Yjmc9uP^`u+a�t?j?^` pX[h^Yc
_�BX
n9a?]_a?WYWeX�W�]_X�W`a�·pXf °nBW`abc;�
Ô2ð à�à Ð�Ñ�Õf×�Ó
��Ð 	±ÖBáÎå���×�ÖpÕfð�Ñ�×�æmØPµ4�BX4 pjmlha?^Yc�y©Xfa�_oB]_Xfu
uUoBnBn�j?]U\UX[¹��w¹¡´�«|¯VP¡%abc9 �uEXft?XfcËj?\U�BXf]�nBWea?cBcBXf]_u�\U��a�\
n�ab]U\U^`Z&^en9a�_Xf �^ecx_�BX7^ec�\UXf]Uc9ab\U^ej?c9a?W�n9Wea?cBcB^ecBd�Z�j?lhn�X�\U^Y\U^ej?c
^ec±�b¦m¦m�°ab]_XhuU�Bj�}�c¨^ec¨µ{ab�9WYX(�m�xµ�¡´�	abc�
����¡��T¡Sa?]UX
 BXfu_Z&]_^Y��Xf �^ec¹£ ��§{a?c9 ¸£ ��§�]_XfuUn�XfZ"_^YtmX�Wew?��µ4�BX¶amZ&]_j?c�w�l�u4^Yc
_�B^`u´\vab�BWeX��9a�tmX4\U�BX7y©j?WeWej�}�^YcBd
lhX[abcB^ecBdmufê ¡Pø��¶ê�¡PWea?cBcBXf]fr
|¯º{º+êB|(X�\U]_^eZ&�«º º+rB¡PøPêp¡P�T�7ø®WYXft?XfWâr����¶ê���o9l#Xf]U^`ZTt�ab]_^¥�
a?�BWeXfufr;µ��¶ê2µ4^elhX#�7oB]va�_^Yjmc9u�r���¡"!#ê���oBlhX�]_^eZfabW�nB]_XfZ�j?cp�
 B^¥_^Yjmc9u�abc9 ¹d?j�abW�r�� !D¡&!#ê���X�d�a�_Xf ±n9]UX[Z&j?c� p^¥_^Yjmc9uhabc9
dmjma?Wâr�i+V�ê+ikjmc9 p^Y\U^ej?c9a?W�V�Í�XfZ&_ufr���ê��7o9a?cm_^¥ë�X�]vu�r4�7¡&!#ê
�7^`u©�0oBc�Z"\U^et?X¯nB]UX[Z&jmc9 p^Y\U^ej?c9uxa?c9 !Tjma?Wâ��¡P�T�7ø�^eu¬nBWea?cp�
c9^YcBd	 Bj?l�ab^ec¸ pXfu_Z&]_^YnB\U^ej?c­Wea?cBd?o9a?d?Xm�x¡P�T�7ø²�B�Y�hWeX�tmX�W��
^ec9Z�WYo9 BXfu�qBµ�É��0¡kqDa?c9
���Tø´��¡P�T�7ø°�p�e��WYXft?X�W��4^eu�abc�a?oBdb�
lhXfcm\va�_^Yjmc�jby;¡P�T�7ø®�p�e��WYXft?X�W���}�^Y\U��c�oBlhX�]_^eZ�t�a?]U^`ab�9WYX[u��
¡k�7�Tø��p�e�PWeX�t?XfW���^eu a?c¶aboBdmlhX�c�_ab\U^ej?c�j?y9¡P�T�7ø��p�e�PWeX�tmX�W
�(}�^¥_�¨\U^el#Xm�(¡P�T�7ø²WYXft?X�W`u
n9a?]E_^ea?WYWew9¼[y©oBWeWew¯�9a?c9 pWeXf ¨��w
t�a?]U^ej?o9u4n9Wea?cBcBX�]vu�ab]_X
abW`uEjhuU�Bj�}�c°^ec	µ{ab�BWeXh�?�´¡��¢|	Vk¡Ë^`u
�BX�j?cBWew¨nBWea?cBcBXf]¶�9a�\h�9abc� pWYX[u�a?WYW4 pjmlha?^Yc±y©Xfa�_oB]_Xfu�^Yc
µ{ab�9WYX��m�{µ4�9X�lhjmuE\P]UX[Z&Xfcm\´tmX�]vuE^ej?c#jby;|(�0¡+qh pj�XfuP�9abc9 BWYX
�7�7øP�
�°×�ÒÎ× 	BÖBå{ã?× ß å{ÖBÒ©í;æ[áÎæmØ°µ4�9^eu�^eu�o9uUXf ±amu¶a¯nB]UXfnB]_j�Z�Xfu_u0�
^ecBdh_XfZv�BcB^`³�oBXD\Uj�]_Xf Bo9Z&XT\U�9X
c�o9l¶��X�]�j?y amZ"\U^ej?c�u4o9uEX[�^Yc
uUXfa?]_Zv�2�­µ4�B^`u�\UX[Zv�BcB^`³mo9X°^`u�uU^el#^eW`ab]�\Uj­]UXfWYXft�a?c9Z&X�abc9a?WYw��
uU^`u�^ec�£ ��§«�¹¡´�«|	Vk¡Sd?^et?X[u�a®o9uUX�]habcËj?np_^Yjmc±\Uj­o9uUX°]_X�WY�
Xft�abc9Z�Xxabc9a?WYwpuU^euf��¡´�«|¯VP¡�Z&jmc9u0_]Uo�Z"_u¶abc¸X&·�_X�c9 pX[¸abc9
uUX�]_^`abW{]UXfWeab·�X[�nBW`abcBcB^ecBd�d?]vabnB� � VkqpÉ�¡"! � y©j?]D]Uj�j?\7cBjp pX
��w	a?nBnBWew�^ecBd�a?Z&\U^ej?c9uT^ec	y©j?]_}4ab]v 	 p^e]UX[Z"\U^ej?c2r;a?uDa¬n�ab]U\Tj?y
]_X�WeX�t�a?c9Z&X�abc�abWew�uU^`u��hµ4�BXxÉ�¡&!þ^`uDX&·�\UXfc9 pX[®��XfZfabo9uUXh^¥\vu
dm]Uj�}4_�¸l�a�w¸��X�Z&jmcm_^Yc�oBX[¸X�tmX�c¹abyù\UXf]ha?WYW4uUoB�Bd?j�abW`u�a?]UX
amZv�B^eX�t?X[¶^ecxaD]_X�W`a�·pXf ¶yÎa?uU�B^ej?ch^YcxuUj?lhX�t�ab]_^`ab�BWeX4WYXft?X�W�� ¡��
|¯VP¡� pj�Xfu
c9jb\¶Zv�BX[Zv~	y©j?]D_�BX¬amZv�B^YXft?Xfl#Xfc�\Dj?y4uUoB�Bdmjma?Weu

^Yc®\U�BX�t�a?]U^`ab�BWeX#WYXft?X�W`uD}��BXfc®^Y\¶Z&jmc9u0_]Uo�Z"_uT_�BXxVkqBÉ�¡"!#�
µ4�BX�Z&jmc9u0_]Uo�Z"\U^ej?chj?y-V+qpÉ�¡&!²uE\Ujmn9u�}��BXfc�cBj�cBXf}ªamZ"_^Yjmc
^eu�a?nBnBWe^eZfab�BWeX
abc9 ¬\U�BXfc�\U�BX�uUX&\�jby a?Z&\U^ej?c9u4^ec�t�a?]U^ej?o�u+amZ"�
\U^ej?c¸WeX�t?XfWeu¶^Yc±\U�BX�VkqpÉ�¡&!Þ^eu�]UX�\UoB]_cBX[¸a?u
_�BX¬]_X�WeX�t�a?cm\
a?Z"_^Yjmc9u L�uUX&\[�
�(×�ð�Ñ�áÎæfÕfáâã?æmØ4¡´�«|¯VP¡MabWeWej�}�u4o9uEXf]�\Uj°Zv�Bj�jmuUX�ah�BX�oB]_^`u0_^eZ
y©]Ujml$_�BX¯y©jmWYWej�}�^ecBd¸y©j?o9]°�BXfoB]_^euE\U^`Z�ufêËikjmuE\fr�|¯ab~?X[uEn�abc;r
q�oBlS poB]va�_^Yjmc¶abc9 ¶��Z"_^Yjmc9uf��µ4�BXk�BX�oB]_^`u0_^eZfu�a?]UX´c9jb\�c9X�}
r
�Bop\�\U�BX¸a?Z&\Uo9a?WD�BX�oB]_^`u0_^eZ®t�abWeoBXfu�abc� �nBW`abc9u� p^YÍ�X�](poBX
\Uj(p^YÍ�Xf]UXfcm\
lhX&_�Bjp ­jby+Z�j?lhnBop_^Yc9d�]_X�W`a�·pX[nBW`abc9uD^ec¸¡��
|	VP¡ �
£¥��§p�¶���kWeoBlïa?c9 ¶|±�bºBoB]vu0\[r?º9amu0\�¡´W`abc9cB^Yc9d�_�B]UjmoBd?��nBW`abcp�
cB^Yc9d�d?]vabnB��abc9a?WYwpuU^eufr;�4��]U\U^Yë�Z&^`abW2�¢cm_X�WeWY^ed?Xfc9Z&Xmr���jmWâ� �?¦ � �&�
� � r-����� ;�r�nBn;�P�?�B�&�¢�?¦m¦B�
£ ��§°|¸�h��jïa?c9 þq����
abl¶�9�9ablhn9ab\U^�r�qp�7¡-��ê�� l¶oBWY\U^Y�
j?�p�0X[Z"\U^et?X�l#X�\U]_^eZ�\UXfl#n�j?]vabW�nBW`abcBcBXf]fr �����0É²�?¦Brp�b¦?¦m�BrmnBn;�
�[�?���_���b���
£ �b§Bq-�?VP pXfWY~�a?l#n2r?µ�a?lh^YcBdDc�oBl���Xf]_u�a?c9 � BoB]_ab\U^ej?c9u{^ec#\U�BX
l#jp pXfW{Zv�9XfZv~�^Yc9dx^Yc�_X�d?]va�_Xf �nBW`abc9cB^Yc9d¬uEwpuE\UXfl�r������0Éï�?¦Br
�b¦?¦m�Br�nBn;�����m���0�b�m�B�
£ �?§h�¶� !TXf]UXft�^ecB^�r#�¶�DqBabX&\U\U^�r#a?c9 S�"��q�Xf]U^ec9aBr#¡´W`abcBc9^YcBd
\U�B]_j?oBdm�²uE\UjpZv�9a?uE\U^`Z(WejpZ�abW
uUXfa?]_Zv��a?c9 ª\UXflhn�jm]_a?WDamZ"_^Yjmc
d?]vabnB�9u+^ec(ø2¡"!#r������0ÉS�?¦BrB�b¦m¦?�Br�nBn2�P�b���b�¢���?¦9�
£ ��§-¡ ���7a?uUWYo9lÊabc9 !��� !TX�Í�c9X�][r���X�o9]U^`u0_^eZTnBW`abc9cB^Yc9d#}�^Y\U�
\U^el#XTabc9 h]_XfuUj?o9]_Z�Xfufr?¡´]_jpZ&X�X[p^ecBdmu�j?y�\U�BXTV´oB]_j?n�Xfa?c°ikj?cp�
y©X�]_X�c9Z�XTjmc�¡PWea?cBcB^ecBd9r9�?¦?¦9�?�
£ �b§��9����jbÍ�l�abcBc¸abc� ­�T����X���X�W�r{º º+ê2µ4�BX°º{º�¡´W`abcBc9^YcBd
q�wpu0_X�l�ê�º�a?uE\{nBW`abc#d?XfcBX�]va�_^Yjmc�_�B]UjmoBd?���BX�o9]U^`u0_^eZ4uUXfa?]_Zv�;r
�?jmoB]Uc�abWTjby#��]E_^¥ë�Z&^`abW
�¢c�\UXfWYWe^YdmX�c9Z�X¸É�XfuUXfa?]_Zv�;r���j?W�� �f�9r
�b¦?¦9�?�
£ ;�§"���#��j?Í�l�a?cBc;r(µ4�BX�|	X&\U]_^`Z"�¢º{º ¡´W`abc9cB^Yc9dÌq�wpu0_X�l�ê
µ2]vabc9uUW`a�\U^ecBd%$E�¢dmcBj?]_^ecBd(��XfWYX�\UX¬ø2^euE_u'&�\Uj(��oBlhX�]_^eZxuE_ab\UX
t�a?]U^`ab�9WYX[u�r������0ÉS�b¦9rp�?¦?¦m�Br�nBn;�P���B�&�¢�b���?�
£ �b§������´jmoBcBXfu­abc� �É
�
q�^Ylhlhj?c�u�r#����¡	�T¡�ê���X�]vuUab\U^eWYX
��X�o9]U^`u0_^eZ¬¡�ab]U\U^`abWY��jm]_ pXf]�¡´W`abcBc9^YcBd�r)�m���0ÉÊ�b¦9r��?¦?¦m�Br{nBn;�
�m¦m�������?¦9�
£ �b§*���)��j?Í�l�abc9cËabc� ¹�T����Xf��XfWâr+É��0º+�GÉ�X�t�^euU^Y\UXf ;ê°�7X&�
\UXfZ&\U^ecBdh]UXfWeab·pXf x^e]_]UXfWYXft�a?c9Z&Xmrp¡´]_j�Z�X�X[p^Yc9dmukjby�V+i+¡ rB�b¦m¦B�?�
£¥�[¦�§��9�{qpabc9Zv�9X �?r��¢c�\UX�dm]_ab\U^ecBd�X-,xZ&^eX�c9Z�w®a?c9 ¯X�·pnB]UX[uUuU^et?X&�
cBXfu_uD^Yc¸n9Wea?cBcB^ecBd9r{|¸� q®_�BXfuU^`u�r´ikj?lhnBop_X�]¶u_Z&^eX�c�Z&X?r{s�cB^Y�
t?X�]vuU^¥\0w�j?y�zM^`uUZ�j?c9uU^Yc2r9|(^eWY}4aboB~mX�Xmr���nB]_^YW��?¦?¦m�B�

edelkamp

edelkamp

edelkamp

edelkamp
55

The YAHSP planning system:
Forward heuristic search with lookahead plans analysis

Vincent Vidal
CRIL - Université d’Artois
rue de l’Université - SP 16

62307 Lens, France
vidal@cril.univ-artois.fr

Introduction
Planning as heuristic search has proven to be a success-
ful framework for STRIPS non-optimal planning, since the
advent of planners capable to outperform in most of the
classical benchmarks the previous state-of-the-art planners
Graphplan (Blum & Furst 1997), Blackbox (Kautz & Sel-
man 1999), IPP (Koehler et al. 1997), STAN (Long &
Fox 1999), LCGP (Cayrol, Régnier, & Vidal 2001), . . . Al-
though these planners (except LCGP) compute optimal par-
allel plans, which is not exactly the same purpose as non-
optimal planning, they also offer no optimality guarantee
concerning plan length in number of actions.

The planning as heuristic search framework indeed lead to
some of the most efficient planners, as demonstrated in the
two previous editions of the International Planning Compe-
tition with planners such as HSP2 (Bonet & Geffner 2001),
FF (Hoffmann & Nebel 2001) and AltAlt (Nguyen, Kamb-
hampati, & Nigenda 2002). FF was in particular awarded
for outstanding performance at the 2nd International Plan-
ning Competition and was generally the top performer plan-
ner in the STRIPS track of the 3rd International Planning
Competition.

The YAHSP planning system (“Yet Another Heuristic
Search Planner”, more details in (Vidal 2004)) extends a
technique introduced in the FF planning system (Hoffmann
& Nebel 2001) for calculating the heuristic, based on the ex-
traction of a solution from a planning graph computed for
the relaxed problem obtained by ignoring deletes of actions.
It can be performed in polynomial time and space, and the
length in number of actions of the relaxed plan extracted
from the planning graph represents the heuristic value of the
evaluated state. This heuristic is used in a forward-chaining
search algorithm to evaluate each encountered state.

We introduce a novel way for extracting information from
the computation of the heuristic, by considering the high
quality of the relaxed plans extracted by the heuristic func-
tion in numerous domains. Indeed, the beginning of these
plans can often be extended to solution plans of the initial
problem, and there are often a lot of other actions from these
plans that can effectively be used in a solution plan. YAHSP
uses an algorithm for combining some actions from each re-

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

laxed plan, in order to find the beginning of a valid plan that
can lead to a reachable state. Thanks to the quality of the
extracted relaxed plans, these states will frequently bring us
closer to a solution state. The lookahead states thus calcu-
lated are then added to the list of nodes that can be chosen to
be expanded by increasing order of the numerical value of
the heuristic. The best strategy we (empirically) found is to
use as much actions as possible from each relaxed plan and
to perform the computation of lookahead states as often as
possible.

This lookahead strategy can be used in different search
algorithms. We propose a modification of a classical best-
first search algorithm in a way that preserves completeness.
Indeed, it simply consists in augmenting the list of nodes
to be expanded (the open list) with some new nodes com-
puted by the lookahead algorithm. The branching factor is
slightly increased, but the performances are generally better
and completeness is not affected.

Our experimental evaluation of the use of this lookahead
strategy in a complete best-first search algorithm demon-
strates that in numerous planning benchmark domains, the
improvement of the performance in terms of running time
and size of problems that can be handled have been drasti-
cally improved (cf. (Vidal 2004)).

Computing and using
lookahead states and plans

A state is a finite set of ground atomic formulas (i.e. without
any variable symbol) also called fluents. Actions are classi-
cal STRIPS actions. Let a be an action; Prec(a), Add(a)
and Del(a) are fluent sets and respectively denote the pre-
conditions, add effects, and del effects of a. A planning
problem is a triple 〈O, I,G〉 where O is a set of actions, I
is a set of fluents denoting the initial state and G is a set of
fluents denoting the goal. A plan is a sequence of actions.
The application of an action a on a state S (noted S ↑ a) is
possible if Prec(a) ⊆ S and the resulting state is defined by
S ↑ a = (S \ Del(a)) ∪ Add(a). Let P = 〈a1, a2, . . . , an〉
be a plan. P is valid for a state S if a1 is applicable on S
and leads to a state S1, a2 is applicable on S1 and leads to
S2, . . . , an is applicable on Sn−1 and leads to Sn. In that
case, Sn is said to be reachable from S for P and P is a
solution plan if G ⊆ Sn. First(P) and Rest(P) respec-

edelkamp
 56

tively denote the first action of P (a1 here) and P without
the first action (〈a2, . . . , an〉 here). Let P ′ = 〈b1, . . . , bm〉
be another plan. The concatenation of P and P ′ (denoted by
P ⊕ P ′) is defined by P ⊕ P ′ = 〈a1, . . . , an, b1, . . . , bm〉.

Principle and use of lookahead plans
In classical forward state-space search algorithms, a node in
the search graph represents a planning state and an arc start-
ing from that node represents the application of one action to
this state, that leads to a new state. In order to ensure com-
pleteness, all actions that can be applied to one state must
be considered. The order in which these states will then be
considered for development depends on the overall search
strategy: depth-first, breadth-first, best-first. . .

Let us now imagine that for each evaluated state S, we
knew a valid plan P that could be applied to S and would
lead to a state closer to the goal than the direct descendants
of S (or estimated as such, thanks to some heuristic evalua-
tion). It could then be interesting to apply P to S, and use
the resulting state S′ as a new node in the search. This state
could be simply considered as a new descendant of S.

We have then two kinds of arcs in the search graph: the
ones that come from the direct application of an action to a
state, and the ones that come from the application of a valid
plan to a state S and lead to a state S ′ reachable from S. We
will call such states lookahead states, as they are computed
by the application of a plan to a node S but are considered in
the search tree as direct descendants of S. Nodes created for
lookahead states will be called lookahead nodes. Plans la-
beling arcs that lead to lookahead nodes will be called looka-
head plans. Once a goal state is found, the solution plan is
then the concatenation of single actions for arcs leading to
classical nodes and lookahead plans for the arcs leading to
lookahead nodes.

Completeness and correctness of search algorithms are
preserved by this process, because no information is lost:
all actions that can be applied to a state are still considered,
and because the nodes that are added by lookahead plans are
reachable from the states they are connected to. The only
modification is the addition of new nodes, corresponding to
states that can be reached from the initial state.

Computing relaxed plans
The determination of an heuristic value for each state as
performed in the FF planner offers a way to compute such
lookahead plans. FF creates a planning graph for each en-
countered state S, using the relaxed problem obtained by
ignoring deletes of actions and using S as initial state. A
relaxed plan is then extracted in polynomial time and space
from this planning graph. The length in number of actions
of the relaxed plan corresponds to the heuristic evaluation
of the state for which it is calculated. Generally, the relaxed
plan for a state S is not valid for S, as deletes of actions
are ignored during its computation: negative interactions be-
tween actions are not considered, so an action can delete a
goal or a fluent needed as a precondition by some actions
that follow it in the relaxed plan. But actions of the relaxed
plans are used because they produce fluents that can be in-
teresting to obtain the goals, so some actions of these plans

can possibly be interesting to compute the solution plan of
the problem. In numerous benchmark domains, we can ob-
serve that relaxed plans have a very good quality because
they contain a lot of actions that belong to solution plans.

The computation of relaxed plans in YAHSP works
closely as in FF, with one notable difference which holds in
the way actions are added to the relaxed plan. In FF, actions
are arranged in the order they get selected. We found use-
ful to use the following algorithm. Let a be an action, and
〈a1, a2, . . . , an〉 be a relaxed plan. All actions in the relaxed
plan are chosen in order to produce a subgoal in the relaxed
planning graph at a given level, which is either a problem
goal or a precondition of an action of the relaxed plan. a is
ordered after a1 iff:

• the level of the subgoal a was selected to satisfy is strictly
greater than the level of the subgoal a1 was selected to
satisfy, or

• these levels are equal, and either a deletes a precondition
of a1 or a1 does not delete a precondition of a.

In that case, the same process continues between a and a2,
and so on with all actions in the plan. Otherwise, a is placed
before a1.

Computing lookahead plans
The algorithm for computing lookahead plans (cf. Figure 1)
takes as input the current planning state S, and the relaxed
plan RP that has been computed by the heuristic function.
Several strategies can be imagined: searching plans with a
limited number of actions, returning several possible plans,
etc. From our experiments, the best strategy we found is to
search one plan, containing as most actions as possible from
the relaxed plan. One improvement we made to that process
is the following. When no action of RP can be applied, we
replace one of its action a by an action a′ taken from the
global set of actions O, such that a′:

• does not belong to RP ,

• is applicable in the current lookahead state S ′,

• produces at least one add effect f of a such that f is a pre-
condition of another action in RP and f does not belong
to S′.

At first, we enter in a loop that stops if no action can be
found or all actions of RP have been used. Inside this loop,
there are two parts: one for selecting actions from RP , and
another one for replacing an action of RP by another action
in case of failure in the first part.

In the first part, actions of RP are observed in turn, in the
order they are present in the sequence. Each time an action a
is applicable in S, we add a to the end of the lookahead plan
and update S by applying a to it (removing deletes of a and
adding its add effects). Actions that cannot be applied are
kept in a new relaxed plan called failed in the order they get
selected. If at least one action has been found to be applica-
ble, when all actions of RP have been tried, the second part
is not used (this is controlled by the boolean continue). The
relaxed plan RP is overwritten with failed and the process
is repeated until RP is empty or no action can be found.

edelkamp
57

function lookahead (S, RP) /* S: state, RP: relaxed plan */
let plan = 〈〉 ;
let failed = 〈〉 ;
let continue = true ;
while continue ∧RP 6= 〈〉 do

continue← false ;
forall i ∈ [1, n] do /* with RP = 〈a1, . . . , an〉 */

if Prec(ai) ⊆ S then
continue← true ;
S ← S ↑ ai ;
plan← plan⊕ 〈ai〉

else
failed ← failed ⊕ 〈ai〉

endif
endfor ;
if continue then

RP ← failed ;
failed ← 〈〉

else
RP ← 〈〉 ;
while ¬continue ∧ failed 6= 〈〉 do

forall f ∈ Add(First(failed)) do
if f /∈ S ∧ ∃a ∈ (RP ⊕ failed) | f ∈ Prec(a) then

let actions =
{a ∈ O | f ∈ Add(a) ∧ Prec(a) ⊆ S} ;

if actions 6= ∅ then
let a = choose best(actions) ;
continue← true ;
S ← S ↑ a ;
plan← plan⊕ 〈a〉 ;
RP ← RP ⊕Rest(failed) ;
failed ← 〈〉

endif
endif

endfor ;
if ¬continue then

RP ← RP ⊕ 〈First(failed)〉 ;
failed ← Rest(failed)

endif
endwhile

endif
endwhile
return(S, plan)

end

Figure 1: Lookahead algorithm

The second part is entered when no action has been ap-
plied in the most recent iteration of the first part. The goal is
to try to repair the current (not applicable) relaxed plan, by
replacing one action by another which is applicable in the
current state S. Actions of failed are observed in turn, and
we look for an action (in the global set of actions O) applica-
ble in S, which achieves an add effect of the action of failed
we observe, this add effect being a precondition not satisfied
in S of another action in the current relaxed plan. If sev-
eral achievers are possible for the add effect of the action of
failed we observe, we select the one that has the minimum
cost in the relaxed planning graph used for extracting the
initial relaxed plan (the cost of an action is the sum of the
initial levels of its preconditions). When such an action is
found, it is added to the lookahead plan and the global loop

is repeated. The action of failed observed when a repairing
action was found is not kept in the current relaxed plan.

Conclusion
We presented a new method for deriving information from
relaxed plans, by the computation of lookahead plans. They
are used in a complete best-first search algorithm for com-
puting new nodes that can bring closer to a solution state.
Although lookahead states are generally not goal states and
the branching factor is increased with each created looka-
head state, the experiments we conducted prove that in nu-
merous domains from previous competitions (Rovers, Lo-
gistics, DriverLog, ZenoTravel, Satellite), our planner can
solve problems that are up to ten times bigger (in number of
actions of the initial state) than those solved by FF or by a
classical best-first search without lookahead.YAHSP seems
also to present good performances in domains from the 4th

IPC, such as Pipesworld, Satellite and Promela/Philosophers
where it solves all the problems, or Psr and Promela/Optical-
Telegraph were a very few problems are not solved. The
domain which seems to be the more difficult for YAHSP is
Airport, where 12 problems are not solved yet.The counter-
part for such improvements in performances and size of the
problems that can be handled resides in the quality of so-
lution plans that can be in some cases degraded (generally
in domains where there are a lot of subgoal interactions).
However, there are few of such plans and quality remains
generally very good compared to FF.

References
Blum, A., and Furst, M. 1997. Fast planning through
planning-graphs analysis. Artificial Intelligence 90(1-
2):281–300.
Bonet, B., and Geffner, H. 2001. Planning as heuristic
search. Artificial Intelligence 129(1-2):5–33.
Cayrol, M.; Régnier, P.; and Vidal, V. 2001. Least commit-
ment in Graphplan. Artificial Intelligence 130(1):85–118.
Hoffmann, J., and Nebel, B. 2001. The FF planning sys-
tem: Fast plan generation through heuristic search. JAIR
14:253–302.
Kautz, H., and Selman, B. 1999. Unifying SAT-based and
Graph-based planning. In Proc. IJCAI-99, 318–325.
Koehler, J.; Nebel, B.; Hoffmann, J.; and Dimopoulos, Y.
1997. Extending planning-graphs to an ADL subset. In
Proc. ECP-97, 273–285.
Long, D., and Fox, M. 1999. The efficient implementation
of the plan-graph in STAN. JAIR 10:87–115.
Nguyen, X.; Kambhampati, S.; and Nigenda, R. 2002.
Planning graph as the basis for deriving heuristics for plan
synthesis by state space and CSP search. Artificial Intelli-
gence 135(1-2):73–123.
Vidal, V. 2004. A Lookahead Strategy for Heuristic Search
Planning. In Proc. ICAPS-2004.

edelkamp
58

CPT: An Optimal Temporal POCL Planner
based on Constraint Programming

Vincent Vidal
CRIL - Universit́e d’Artois
rue de l’universit́e - SP16

62307 Lens Cedex, FRANCE
vidal@cril.univ-artois.fr

Héctor Geffner
ICREA & Universitat Pompeu Fabra

Paseo de Circunvalacion 8
08003 Barcelona, SPAIN
hector.geffner@upf.edu

CPT is a new domain-independent temporal planner
that combines a branching scheme based on Partial Order
Causal Link (POCL) Planning with powerful and sound
pruning rules implemented as constraints. Unlike other re-
cent approaches that build on POCL planning (Nguyen &
Kambhampati 2001; Younes & Simmons 2003),CPT is an
optimal planner that minimizes makespan. The details of
the planner and its underlying formulation are described
in (Vidal & Geffner 2004) that is focused on the compu-
tation of ‘canonical plans’ where ground actions are not
done more than once in the plan. The version used in the
competition, removes this restriction and computes opti-
mal temporal plans, whether canonical or not.

The development ofCPT is motivated by the limita-
tion of heuristic state approaches to parallel and temporal
planning that suffer from a high branching factor (Haslum
& Geffner 2001) and thus have difficulties matching the
performance of planners built on SAT techniques such as
Blackbox (Kautz & Selman 1999). InCPT, all branching
decisions (resolution of open supports, support threats, and
mutex threats), generate binary splits, and nodesσ in the
search correspond to ‘partial plans’ very much as in POCL
planning.

While ideally, one would like to have informative lower
boundsf(σ) on the makespanf∗(σ) of the best com-
plete plans that expandσ, so that the partial planσ can
be pruned iff(σ) 6≤ B for a given boundB, such lower
bounds are not easy to come by in the POCL setting.CPT
thus models the planning domain as a temporal constraint
satisfaction problem, adds the constraintf∗(σ) ≤ B for
a suitable boundB on the makespan, and performs lim-
ited form of constraint propagation in every nodeσ of
the search tree. The novelty ofCPT in relation to other
temporal POCL planners such as IxTET (Laborie & Ghal-
lab 1995) and RAX (Jonssonet al. 2000), that also rely
on constraint propagation (and Dynamic CSP approaches
such as (Joslin & Pollack 1996)), is the formulation that
enablesCPT to reason about actionsa that are not yet in
the plan. Often a lot can be inferred about such actions in-
cluding restrictions about their possible starting times and
supports. Some of this information can actually be inferred

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

before any commitments are made; the lower bounds on
the starting times ofall actions as computed in Graphplan
being one example (Blum & Furst 1995).CPT thus reasons
with CSP variables that involveall the actionsa in the do-
main and not only those present in the current plan, and
for each such action, it deals with two variablesS(p, a)
andT (p, a) that stand for the possibly undetermined ac-
tion supporting preconditionp of a, and the possibly un-
determined starting time of such an action. A causal link
a′[p]a thus becomes a constraintS(p, a) = a′, which in
turn implies that the supportera′ of preconditionp of a
starts at timeT (p, a) = T (a′). A number of constraints
enforce the correspondences among these variables. At
the same time, the heuristic functions for estimating costs
in a temporal setting, as introduced in (Haslum & Geffner
2001), are used to initialize variables domains and some
‘distances’ between actions (Van Beek & Chen 1999).

The CPT planner is implemented using the Choco CP
library (Laburthe 2000) that operates on top of Claire,
(Caseau, Josset, & Laburthe 1999), a high-level program-
ming language that compiles into C++. Further details
can be found in (Vidal & Geffner 2004) that is concerned
mostly with the computation of optimal canonical plans;
plans where no ground action is done more than once. The
version ofCPT used in the competition removes this re-
striction, and computes optimal temporal plans, whether
canonical or not. Currently, the semantics of these plans
follows the one in (Smith & Weld 1999) where interfering
actions are not allowed to overlap in time. This condi-
tion has been relaxed in PDDL 2.1 where interfering ac-
tions may overlap sometimes (e.g., when preconditions do
not have to be preserved throughout the execution of the
action). We are currently trying to accommodate that se-
mantics as well.

References

Blum, A., and Furst, M. 1995. Fast planning through
planning graph analysis. InProceedings of IJCAI-95,
1636–1642. Morgan Kaufmann.

Caseau, Y.; Josset, F. X.; and Laburthe, F. 1999. Claire:
Combining sets, search and rules to better express algo-

edelkamp
59

rithms. In Proceedings of the Int. Conf. on Logic Pro-
gramming.
Haslum, P., and Geffner, H. 2001. Heuristic planning
with time and resources. InProc. European Conference
of Planning (ECP-01), 121–132.
Jonsson, A.; Morris, P.; Muscettola, N.; and Rajan, K.
2000. Planning in interplanetary space: Theory and prac-
tice. InProc. AIPS-2000, 177–186.
Joslin, D., and Pollack, M. E. 1996. Is ”early commit-
ment” in plan generation ever a good idea? InProceed-
ings AAAI-96, 1188–1193.
Kautz, H., and Selman, B. 1999. Unifying SAT-based
and Graph-based planning. In Dean, T., ed.,Proceedings
IJCAI-99, 318–327. Morgan Kaufmann.
Laborie, P., and Ghallab, M. 1995. Planning with
sharable resources constraints. In Mellish, C., ed.,Proc.
IJCAI-95, 1643–1649. Morgan Kaufmann.
Laburthe, F. 2000. Choco: implementing a cp kernel.
In Proceedings CP-00, Lecture Notes in CS, Vol 1894.
Springer.
Nguyen, X. L., and Kambhampati, S. 2001. Reviving
partial order planning. InProc. IJCAI-01.
Smith, D., and Weld, D. 1999. Temporal planning with
mutual exclusion reasoning. InProc. IJCAI-99, 326–337.
Van Beek, P., and Chen, X. 1999. CPlan: a constraint pro-
gramming approach to planning. InProc. National Con-
ference on Artificial Intelligence (AAAI-99), 585–590.
AAAI Press/MIT Press.
Vidal, V., and Geffner, H. 2004. Branching and pruning:
An optimal temporal POCL planner based on constraint
programming. InProceedings AAAI-04. To appear.
Younes, B. L. S., and Simmons, R. G. 2003. VHPOP:
Versatile heuristic partial order planner.Journal of AI
Research20:405–430.

edelkamp
60

BFHSP: A Breadth-First Heuristic Search Planner

Rong Zhou and Eric A. Hansen
Department of Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

{rzhou,hansen}@cse.msstate.edu

Overview
Our Breadth-First Heuristic Search Planner (BFHSP) is a
domain-independent STRIPS planner that finds sequential
plans that are optimal with respect to the number of ac-
tions it takes to reach a goal. We developed BFHSP as
part of our research on space-efficient graph search. It uses
breadth-first search since we found that breadth-first search
is more efficient than best-first search when divide-and-
conquer solution reconstruction is used to reduce memory
requirements. The specific search algorithm used by BFHSP
is Breadth-First Iterative-Deepening A* (Zhou & Hansen
2004) with some enhancements. Like HSP2.0 (Bonet &
Geffner 2001a), BFHSP can search in either progression or
regression space. The admissible heuristic function used is
thehmax heuristic (Bonet & Geffner 2001b) in progression
search, and themax-pairheuristic (Haslum & Geffner 2000)
in regression search.

Divide-and-Conquer Solution Reconstruction
Our research objective in developing BFHSP is to design
heuristic search algorithms that can find optimal plans using
limited memory, especially in complex graphs with many
duplicate paths where IDA* is usually ineffective. BFHSP
uses divide-and-conquer solution reconstruction to reduce
its memory requirement. Divide-and-conquer solution re-
construction was first introduced to the heuristic search com-
munity by Korf (1999), based on a similar strategy used in
dynamic programming algorithms for sequence comparison.
The technique exploits the fact that it is not necessary to
store all expanded nodes in a Closed list in order to prevent
re-generation of already-expanded nodes. Instead, it suffices
to store a subset of nodes that forms aboundarybetween the
frontier and interior of the explicit search graph (Zhou &
Hansen 2003).

Although nodes inside the boundary can be removed from
memory without risking duplicate search effort, this means
it is no longer possible to reconstruct a solution by the tra-
ditional traceback method. To allow divide-and-conquer so-
lution reconstruction, each node stores information about a
node along an optimal path to it that divides the problem in
about half. Once the search problem is solved, information

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

about this midpoint node is used to divide the search prob-
lem into two subproblems: the problem of finding an opti-
mal path from the start node to the midpoint node, and the
problem of finding an optimal path from the midpoint node
to the goal node. Each of these subproblems is solved by the
same search algorithm, in order to find a node in the middle
of their optimal path. The process continues recursively un-
til primitive subproblems are reached, and all nodes on the
optimal solution path have been identified. Since the time it
takes to solve all subproblems is very short compared to the
time it takes to solve the original search problem, this tech-
nique saves a great deal of memory in exchange for limited
time overhead for solution reconstruction.

There are several different ways to store information
about the midpoint node. BFHSP adopts the method used
by Sparse-Memory A* (Zhou & Hansen 2003). Each node
stores a pointer to its predecessor or to an intermediate node
along an optimal path, called arelay node, which is retained
in memory. The advantage of this approach is that it takes
less space and allows faster solution reconstruction.

Breadth-First Heuristic Search
A significant difference between BFHSP and HSP2.0 is that
BFHSP uses a breadth-first instead of the traditional best-
first strategy of node expansion. This difference is based
on our discovery that when divide-and-conquer solution re-
construction is used, breadth-first search is more memory-
efficient than best-first search (Zhou & Hansen 2004). The
reason for this is that memory requirements depend on the
number of nodes needed to maintain a boundary between
the frontier and interior of the search, and not the total num-
ber of nodes expanded. Figure 1 conveys an intuition of
how breadth-first search results in a smaller set of bound-
ary nodes. It shows that best-first node expansion “stretches
out” the boundary, whereas breadth-first search does not and
uses an upper bound to limit the width of the boundary. Al-
though breadth-first search expands more nodes than best-
first search, the memory it saves by storing a smaller bound-
ary results in more efficient search.

Note that BFHSP uses both an admissible heuristic func-
tion and an upper bound to limit exploration of the search
space. No node is inserted into the Open list if itsf -cost is
greater than an upper bound on the cost of an optimal solu-
tion, since such nodes cannot be on an optimal path.

edelkamp
61

Figure 1: Comparison of best-first and breadth-first boundaries.
The outer ellipse encloses all nodes withf -cost less than or equal
to an (optimal) upper bound.

A breadth-first search graph divides into layers, one for
each depth. To prevent duplicate search effort, BFHSP keeps
(at least) three layers in memory: the currently-expanding
layer, its immediate previous layer, and the next layer. In
addition, it also stores arelay layerfor the purpose of solu-
tion reconstruction. Other layers can be pruned to recover
memory.

BFHSP provides two options regarding how previously-
explored layers are removed from memory. The first op-
tion, calledaggressive pruning, removes immediately any
layer that is not one of the four layers mentioned previously.
The second option, calledlazy pruning, is the same as the
first one, except that it removes layers only when memory
is full. Because BFHSP with lazy pruning is the same as
breadth-first branch-and-bound search until memory is full,
the time overhead of solution reconstruction is avoided if
there is enough memory. In IPC-4, BFHSP uses lazy prun-
ing during solution reconstruction, because subproblems are
often small enough in size that they can be solved by ordi-
nary breadth-first branch-and-bound search.

For undirected graphs, storing only one previous layer
is sufficient to preventall duplicate search effort (Zhou &
Hansen 2004). For directed graphs, the number of times a
node can be re-generated by BFHSP isat mostlinear in the
depth of the search. This contrasts sharply to the potentially
exponential number of node re-generations for linear-space
search algorithms that rely on depth-first search.

Breadth-First Iterative-Deepening A*
Although BFHSP uses an upper bound to limit its search
space, it is possible to run the planner without a previously-
computed upper bound. Instead, an iterative-deepening
strategy can be used to avoid expanding nodes that have an
f -cost greater than a hypothetical upper bound.Breadth-
First Iterative-Deepening A*(BFIDA*) first runs breadth-
first heuristic search using thef -cost of the start node as an
upper bound. If no solution is found, it increases the up-
per bound by one (or to the leastf -cost of any unexpanded
nodes) and repeats the search until a solution is found. In
this respect, it is similar to Depth-First Iterative-Deepening
A* (Korf 1985). The difference is that it never expands
the same node twice during the same iteration. (This claim
holds for undirected graphs, and for many – but not all – di-
rected graphs.) The amount of memory used is the same as
the amount of memory BFHSP would use given an optimal

upper bound. However, BFIDA* may run more slowly than
BFHSP with a previously-computed upper bound, because
running multiple iterations of BFHSP takes extra time.1

To reduce the number of iterations, BFHSP uses an im-
proved version of BFIDA*, calledBFIDA* CR, that is based
on an idea used in IDA*CR (Sarkaret al. 1991), where
“CR” stands for controlled re-expansion. The idea is to cre-
ate an algorithm in which the number of nodes expanded in
successive iterations increases exponentially with the num-
ber of iterations. Among other things, BFIDA*CR has an
interesting advantage over IDA*CR. That is, for planning
problems with unit action cost, BFIDA*CR can guaran-
tee that the first solution found is optimal, because it uses
breadth-first search; whereas IDA*CR cannot, due to its use
of depth-first search.

Unlike conventional iterative-deepening search, which in-
creases its bound to the minimum f-cost of any unexpanded
nodes after each iteration, BFIDA*CR may use a slightly
higher bound to reduce overall node expansions by reducing
the number of iterations it takes to find a solution. The ben-
efit of using BFIDA* CR is most evident in problems with
small branching factor but long solution depth, such as the
newly-releasedairport domain in IPC-4.

Admissible Search Heuristics
BFHSP uses the admissiblehmax heuristic (Bonet & Geffner
2001b) in progression search and themax-pair heuris-
tic (Haslum & Geffner 2000) in regression search. In ad-
dition, we implemented themax-tripleheuristic for regres-
sion search by considering triples (instead of pairs) of atoms.
The max-triple heuristic is more accurate than the max-pair
heuristic, and often results in four or five-fold reduction
in node expansions. The max-triple heuristic is, however,
more time-consuming to compute and takes more memory
to store, because its time (and space) complexity is cubic
in the number of atoms. As a result, it is not the default
search heuristic in BFHSP. An interesting observation, how-
ever, is that using the max-triple heuristic lets BFHSP solve
some STRIPS instances of thephilosophersproblem that
cannot be solved by using the max-pair heuristic in regres-
sion search, because using the max-triple heuristic makes
it possible to recognize high-order mutexes (Blum & Furst
1995) and to prune states that contain them.

Special Features
Breadth-first (heuristic) search, when applied to problems
with unit action cost, has the advantage that when a node
is first generated, an optimal path to it has been found.
With some changes to the algorithm, this property can be
exploited to reduce the internal memory requirement of
BFHSP. In fact, we have developed an external-memory ver-
sion of BFHSP that uses disk storage in order to bound its
internal-memory requirement (Forthcoming). However, we
did not use it in IPC-4, because given the constraints of the
Competition (30 minutes of CPU time and 1 gigabytes of

1It is possible to improve the efficiency of BFHSP by reusing
information stored from previous iterations of BFIDA*, but we did
not explore this possibility in our current implementation.

edelkamp
62

RAM), it is unclear whether memory is the bottleneck in-
stead of time. In our experience with IPC-4, there are more
problems for which BFHSP ran out of time before it ran out
of memory, than the other way around.

Conclusion
Our primary design goal for BFHSP is to reduce its memory
requirement, which is an important issue for many optimal
heuristic search-based planners. Unfortunately, the time and
space constraints of this Competition do not make it possible
to fully demonstrate the advantages of BFHSP. For example,
we have run BFHSP for days without running out of memory
and have used it to find optimal plans for STRIPS problems
that are far beyond the reach of HSP2.0 or HSPr* (Haslum
& Geffner 2000). We believe that in many real-world ap-
plications where optimality is important, memory is likely
to be a bottleneck, and BFHSP will have an advantage over
other optimal planners.

Acknowledgement
We thank Blai Bonet and Hector Geffner for making pub-
licly available their code for HSP2.0, upon which BFHSP is
built.

References
Blum, A., and Furst, M. 1995. Fast planning through plan-
ning graph analysis. InProc. of the 14th International Joint
Conference on Artificial Intelligence (IJCAI-95), 1636–42.
Bonet, B., and Geffner, H. 2001a. Heuristic search planner
2.0. AI Magazine22(3):77–80.
Bonet, B., and Geffner, H. 2001b. Planning as heuristic
search.Artificial Intelligence129(1):5–33.
Haslum, P., and Geffner, H. 2000. Admissible heuristics
for optimal planning. InProc. of the 5th International Con-
ference on AI Planning and Scheduling, 140–149.
Korf, R. 1985. Depth-first iterative deepening: An optimal
admissible tree search.Artificial Intelligence27:97–109.
Korf, R. 1999. Divide-and-conquer bidirectional search:
First results. InProc. of the 16th International Joint Con-
ference on Artifiicial Intelligence (IJCAI-99), 1184–1189.
Sarkar, U.; Chakrabarti, P.; Ghose, S.; and Sarkar,
S. D. 1991. Reducing reexpansions in iterative-deepening
search by controlling cutoff bounds.Artificial Intelligence
50:207–221.
Zhou, R., and Hansen, E. 2003. Sparse-memory graph
search. InProceedings of the 18th International Joint Con-
ference on Artificial Intelligence (IJCAI-03), 1259–1266.
Zhou, R., and Hansen, E. 2004. Breadth-first heuristic
search. InProc. of the 14th International Conf. on Auto-
mated Planning and Scheduling.

edelkamp

edelkamp
63

Heuristic Planning via Roadmap Deduction

Lin Zhu and Robert Givan ∗

ElectricalandComputerEngineering,PurdueUniversity, WestLafayetteIN 47907USA
{lzhu, givan}@purdue.edu

Abstract

Porteous et al. (2001) introduced the concept of “planning
landmarks”—propositions that must be true at some point
during the execution of every successful plan. We define “re-
laxed landmarks,” a subset of the planning landmarks, and
give a sound and complete algorithm for computing relaxed
landmarks. All the landmarks computed by the previous
method are relaxed landmarks, but that method was signif-
icantly incomplete for finding relaxed landmarks. We addi-
tionally discriminate between useful “causal” landmarks and
misleading “non-causal” landmarks, and our method easily
omits the latter. We then present a novel method for partially
ordering landmarks into “landmark roadmaps”, where two or-
dered landmarks are present in the given order in every suc-
cessful plan execution. Finally, we give an efficient means of
extending FF’s heuristic to leverage a landmark roadmap by
weighting the components of the relaxed plan. The SCHEME
variant of FF using this heuristic, ROADMAPPER, works on
the non-temporal ADL versions of the IPC4.

Our ROADMAPPER planneris a variant of FF where the
heuristic is significantly more complex and derived from
a partially orderedset of landmarks. In what follows,
we formalize, motivate, and define the heuristic used in
ROADMAPPER.

Background
We refer to (McAllester & Rosenblitt1991)asSNLP and
generallyfollow andadaptit for notationregardingSTRIPS
planningandpartialorderplanning.

Strips Planning. Let X be a finite set of proposi-
tions. A state S is a finite subset of X . An ac-
tion o is a triple o = 〈PRE(o), ADD(o), DEL(o)〉 where
PRE(o) are the preconditions, ADD(o) is the add list and
DEL(o) is the delete list, each being a set of proposi-
tions. The result RESULT(S, (o1, . . . , on)) of applying
an action sequence(o1, . . . , on) to a state S is given
by RESULT(RESULT(S, (o1, . . . , on−1)), (on)), wherefor n
equals1 the result is undefinedunlessPRE(o1) ⊆ S, and
(S ∪ ADD(o1))− DEL(o1), otherwise.

∗We are grateful to Alan Fern and Matthew Greig for useful
discussions.
Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

A planning task P is a setof actionscontainingactions
START andFINISH, wherePRE(START), DEL(FINISH), and
ADD(FINISH) are all empty. We refer to PRE(FINISH)
as the goal region and ADD(START) as the initial state.
We also consider the relaxed planning task P R (which
ignoresdeleteeffects) given by {(PRE(o), ADD(o), ∅) |
(PRE(o), ADD(o), DEL(o)) ∈ P}.

A linear solution for a task P is an orderedaction se-
quence~o, beginningwith START , endingwith FINISH such
thatRESULT(∅, ~o) is defined.

Partial Order Planning To allow multipleoccurrencesof
thesameactionor thesamepropositionwithin ournonlinear
plans,weintroducefinite setsof step names andfact names,
respectively. Eachplan includesa symbol table mapping
stepnamesto actionsandfactnamesto propositions1. We
usestepnamesandfactnamesasactionsor propositions,re-
spectively, assuminganimplicit look-upof thecorrespond-
ing action or propositionin the appropriatesymbol table.
Notethatnamingfor factsis neededsothatwe canlateral-
low a fact to bea landmarkmorethanonetime, indicating
thatthatfactmustbeaddedmultiple timesin any successful
plan.

A nonlinear plan, or plan for short, is a pair 〈Σ,≤〉 of
a symbol tableΣ, anda partial order2 ≤ on names3 (step
namesandfactnames)in Σ. We write x < y to abbreviate
x ≤ y ∧ x 6= y. Thelength of theplanis thenumberof step
symbolsin Σ.

SNLP introducedthe conceptof causal links to help
developinga systematic,soundandcompletesearchalgo-
rithm. Causallinks can be inferred from our representa-
tion. A causal link is a triple 〈s, p, w〉, written ass

p

→ w,
wheres andw are stepnames,andp is a proposition4 in
ADD(s)∩PRE(w), suchthats < x < w for somex mapped
to p, andthateitherv < s or w < v for every stepnamev
in theset{y ∈ Σ−X | p ∈ DEL(y)} − {s, w}. Note,there
can be two differentcausallinks s1

p

→ w ands2

p

→ w for

1This is different from the original SNLP paper, where the sym-
bol table contained only step names.

2For our purpose, a partial order is a reflexive, transitive, anti-
symmetric relation, viewed as a set of orders x < y .

3Again, ordering on fact names is necessary to allow proposi-
tion landmarks.

4Note, not a fact name.

edelkamp
64

the samestepnamew andthesamepropositionp. This is
not thecasefor SNLP.

A bijectionσ on namesis calleda renaming. We extend
suchrenamingsnaturally to bijectionson complex objects
containingnames(suchasplans),in eachcaserenamingthe
namesappearingwithin. We saya nonlinearplan 〈Σ′,≤′〉
refines 〈Σ,≤〉 whenever, for somerenamingσ, σ(Σ) ⊆ Σ′

andσ(≤) ⊆≤′. If eitherof the containmentis proper, the
refinementis calledstrict.

A nonlinearplan is calledcomplete if FINISH is named
by Σ, andfor everystepnamev ∈ Σ andeveryproposition
p in PRE(v), thereis at least one causallink s

p

→ v. Later
in this paper, we generallyrestrictour attentionto nonlinear
plansthatarecomplete.

A relaxed (nonlinear) plan for P is a nonlinearplan for
the correspondingrelaxed taskP R. Obviously every plan
for P is a relaxed plan for P . A relaxed plan is called
non-redundant if any propositionor actionis namedatmost
once.Any relaxedplanrefinessomenon-redundantrelaxed
plan.

Landmarks and Roadmaps
Definition 1 A nonlinear plan 〈Σ,≤〉 is a roadmapfor plan-
ning task P if every complete nonlinear plan for P refines
〈Σ,≤〉.

Wecall actionsor propositionsappearingin Σ for aroadmap
causal landmarks. Causallandmarksthat are propositions
arelandmarks in thesenseof Porteousetal. 2001:theplan-
ning problemcannotbe solved if the actionsaddingsuch
a propositionare removed. However, not every landmark
is a causallandmark:somelandmarksarejust “incidental”
effects of the action that addsthem. Considera problem
wheretheagentmusttravel in therain to solve theproblem.
“Gettingwet” will beanon-causallandmark,asit is aneces-
saryeffect of anessentialaction.Setting“getting wet” asa
subgoalwould bemisleading.Thuswe considernon-causal
landmarksto be misleadingand inappropriateas subgoals
for theplanningtask.

Porteouset al. showedtheproblemof finding landmarks
for a planningtaskto be PSPACE-hard. The proof canbe
easilyextendedhere.

Theorem 1 The problem of deciding whether a proposition
or an action is a causal landmark is PSPACE-hard.

Thereforededucingany nontrivial roadmapis difficult as
well. Here we will concentrateon a tractablesubsetof
roadmaps.

Definition 2 A relaxed roadmapfor planning task P is a
roadmap for the corresponding relaxed planning task P R.

We call actionsor propositionsappearingin Σ for a relaxed
roadmaprelaxed causal landmarks. Every relaxedroadmap
is aroadmap,andthereforeeveryrelaxedcausallandmarkis
a causallandmark.

To computerelaxed roadmaps,we first assumea base
algorithm A_RELAXED_PLAN(P) that finds some non-
redundant plan for the relaxed planningtaskP R, if there
exists one, and returns FALSE otherwise. The heuristic

computationin FF containsan efficient implementation
of A_RELAXED_PLAN, which empirically often returnsa
goodapproximationof theshortestrelaxedplan.

The relaxed roadmapis computedin a generate-and-test
way. Wefirst call A_RELAXED_PLAN to generatearelaxed
plan〈Σ,≤〉. Sinceby definitionany relaxedroadmapis re-
finedby 〈Σ,≤〉, weselectasubsetof Σ andasubsetof ≤ to
geta relaxedroadmap,by thetestphasedescribedbelow.

Again, the function A_RELAXED_PLAN is usedto test
whethera propositionor anactionis a relaxedcausalland-
mark. To do so,we first definethe reducedplanningprob-
lem Px̄, intendedto be solvable exactly when x is not a
causallandmarkfor P . If the landmarkx which we want
to test is a proposition,Px̄ is {ox̄ = 〈PRE(o), ADD(o) −
{x}, DEL(o)〉 | o ∈ P}; otherwisePx̄ = P − {x}. We
know x is a relaxed causallandmarkfor P if and only if
A_RELAXED_PLAN(Px̄) returnsFALSE.5

Further, we can usethe above methodto verify x < y
for a (relaxed)roadmap.To do so,we defineP→y, thesub-
problemof P with goalof reachingy. P→y is thesameas
P exceptthatFINISH is replacedwith 〈PRE(y), ∅, ∅〉 if y is
a stepname,and 〈{y}, ∅, ∅〉 otherwise. For every pair of
causallandmarksx andy, we know thatx < y appearsin a
relaxedroadmapif andonly if x is arelaxedcausallandmark
of P→y , i.e.,A_RELAXED_PLAN(Px̄,→y) returnsFALSE.

In thealgorithmbelow, we useR∗ to denotethereflexive
transitiveclosureof a relationR.

Algorithm 1 RELAXED_ROADMAP(P)
Input: A planning task

〈Σc,≤c〉 ← A_RELAXED_PLAN(P)
Σr ← {x ∈ Σc |

not A_RELAXED_PLAN(Px̄)}
≤r ← {(x, y) ∈≤c ∩Σr × Σr |

not A_RELAXED_PLAN(Px̄,→y)}
return 〈Σr,≤∗

r〉

Theboundon thetimesof calling A_RELAXED_PLAN(P)
is O(n + m2), wheren is the total numberof actionsand
propositions,and m is the total numberof relaxed land-
marks. In practice,m is typically much smaller than n.
Thereareseveral waysto make this computationmoreef-
ficientwhichareomittedhere.

Theorem 2 The output of RELAXED_ROADMAP(P)

Soundness is a relaxed roadmap for P , and
Completeness refines every relaxed roadmap for P .

We noteherethat the above methodis not the only to de-
duceroadmaps.Roadmapsgeneratedin otherwayscanbe
incorporated.

Weighted Relaxed Plan Length as a Heuristic
A roadmapintuitively containsimportantorderedsubgoals
of a planningproblem. Porteouset al. 2001 proposedto
useit to sub-divide planningproblemsinto smaller, easier

5In contrast, Porteous et al. define Px̄ as P −{o | x ∈ ADD(o)}
if x is a proposition. This can be used to test landmarks, but cannot
distinguish causal landmarks.

edelkamp
65

pieces,and then usea baseplannerto solve them one by
one. This methodology, however, ignoresthe interactions
betweensolving subgoals. In particular, the baseplanner
maysolve a subgoalin a way sothatlatersubgoalsbecome
hardor impossibleto solve.

Another way to utilize landmarksis to simply use the
numberof landmarksasa heuristicguidingforwardsearch.
Empirical resultsshow it is effective on somedomainsat
a high level (Zhu & Givan 2003). However, this heuristic
is not informative on how to solve the subgoals.It is only
whena subgoalis solved,by blind search,that theheuristic
decreasesby one.

We introducea novel usageof roadmapsbelow. We use
roadmapsto weight thecomponentsof a successfulheuris-
tic, emphasizingsolvingonesubgoal,while keepinganeye
on thesolutionof othersubgoals.

The successof FF (Hoffmann & Nebel 2001) mainly
comes from its efficient and accurateheuristic, and its
uniquesearchstrategy, enforced hill-climbing, that is in-
completebut often very fast6. Unlike pure hill-climbing,
which iteratively selectssingle actionswith the bestone-
step-look-aheadheuristicvalueandoftenhasdifficulty with
localminimaandplateaus,enforcedhill-climbing iteratively
usesbreadth-firstsearchto find action sequences that lead
to stateswith heuristicvaluesthatarestrictly betterthanthe
currentstate.

Here,we discussFF’s heuristicandour way to improve
its quality. We know that an ideal searchheuristicwould
betheoptimal lengthof a completeplan. Sincethis heuris-
tic is not tractablycomputable,FF approximatesit by two
relaxations.In the following discussion,we denotethe set
of plansfor task P by PLANS(P), and the set of relaxed
plansby RELAXED_PLANS(P). Obviously PLANS(P) ⊆
RELAXED_PLANS(P).

First, FF considerstherelatively easierproblemof com-
putingRELAXED_PLANS(P), andapproximates(andlower
bounds)the optimal lengthamongPLANS(P) by the opti-
mal lengthamongRELAXED_PLANS(P). Empirical(Hoff-
mann2001)andtheoretical(Hoffmann2002)resultsshow
thatoptimalrelaxedplanlength(appliedwith enforcedhill-
climbing) is a goodheuristicfor a largevarietyof planning
domains,andoftenleadsto polynomialsearchcomplexity.

Second,sinceit’s still difficult to computetheoptimalre-
laxed plan, it extractsone relaxed plan to get an approxi-
mationof theoptimal relaxedplan length,utilizing various
heuristicconsiderationsto encouragenear-optimality. Em-
pirical results(Hoffmann2001)show that the lengthof the
relaxedplanextractedthis way is oftena goodapproxima-
tion of theoptimal relaxedplan length. FF usesthis length
asits heuristic.

We extendtherelaxed-plan-lengthheuristicby assigning
weightsto its components.Among all the landmarksthat
havenootherlandmarkorderedbeforethemin theroadmap,
we chooseoneachievableby theshortestrelaxedplan. The
heuristicof the global problemis the weightedsumof re-
laxed plan lengthsof all landmarks.The chosenlandmark

6In the rare case the enforced hill-climbing fails, FF resorts to
an expensive but complete search.

getsweight f , andall the othersget weight 1. We gener-
ally considerf that is greaterthan1. The greaterf is, the
moreaggressive theplanneris on solvingonesubgoal,and
themoreobliviousit is to thedifficulty of othersubgoals.

In theoryandin practice,thecomputationof thisheuristic
shouldaddonly trivial burdento thatof FF, besidestheone-
timecostof computingroadmap.

We then utilize this heuristic in a similar way to FF,
and apply the resulting planner, ROADMAPPER, to non-
temporal ADL versionsof the fourth internationalplan-
ning competition. Our implementationis fully written in
SCHEME, a dialectof L ISP.

References
Hoffmann,J., andNebel,B. 2001. TheFF planningsys-
tem:Fastplangenerationthroughheuristicsearch.Journal
of Artificial Intelligence Research 14:253–302.
Hoffmann, J. 2001. Local searchtopology in planning
benchmarks:An empirical analysis. In Proceedings of
the 17th International Joint Conference on Artificial Intel-
ligence (IJCAI-01), 453–458.
Hoffmann, J. 2002. Local searchtopology in planning
benchmarks:A theoreticalanalysis. In Proceedings of
the 6th International Conference on Artificial Intelligence
Planning and Scheduling (AIPS-02). 379-387.
McAllester, D., and Rosenblitt, D. 1991. Systematic
nonlinearplanning. In Proceedings of the Ninth National
Conference on Artificial Intelligence (AAAI-91), volume2,
634–639. Anaheim,California, USA: AAAI Press/MIT
Press.
Porteous,J.; Sebastia,L.; andHoffmann,J. 2001. On the
extraction,ordering,andusageof landmarksin planning.
In Recent Advances in AI Planning. 6th European Confer-
ence on Planning (ECP’01), 37–48.
Zhu, L., and Givan, R. 2003. Landmark Extraction
via Planning Graph Propagation. In Printed Notes of
ICAPS’03 Doctoral Consortium. Trento,Italy.

edelkamp
66

Probabilistic Part

edelkamp

Introduction to the Probabilistic Planning Track

Michael L. Littman
Department of Computer Science

Rutgers University
Piscataway, NJ 08854 USA
mlittman@cs.rutgers.edu

Håkan L. S. Younes
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213 USA

lorens@cs.cmu.edu

Abstract

The 2004 International Planning Competition, IPC-4,
includes a probabilistic planning track for the first time.
We briefly summarize the design of the track.

Introduction
Domain-independent planners seek to synthesize plans that
achieve goals as cheaply as possible. While classical plan-
ning is concerned with domains in which operators have de-
terministic effects—the planner can predict with certainty
how its decisions will change the environment—work on
probabilistic planning expands the field to include opera-
tors with uncertain effects. The inclusion of probabilistic
effects extends domain description languages to a more re-
alistic class of applications. However, this increased gener-
ality comes with the price of increased computational com-
plexity of planners and plan evaluation (Littman, Goldsmith,
& Mundhenk 1998).

The 2004 International Planning Competition, IPC-4,
introduces a probabilistic planning track for the first
time. The goal of the track is to provide a forum for
the evaluation and comparison of approaches to prob-
abilistic planning. At the time of this writing, most of
the logistical decisions have been made, but the com-
petition and evaluation have not yet taken place. This
document summarizes the status of the competition as
of April 2004. For the latest developments, please visit:
http://www.cs.rutgers.edu/ ∼mlittman/topics/
ipc04-pt/ .

The probabilistic track was organized by the authors,
Michael L. Littman and H˚akan L. S. Younes, and a team at
Rutgers consisting of John Asmuth, David Weissman, and
Paul Batchis.

Calendar
Planning for the probabilistic track dates back to shortly af-
ter IPC-1. However, it was Sven Koenig and Shlomo Zil-
berstein’s idea to specifically create a probabilistic track for
IPC-4. Initial attempts to drum up support for the compe-
tition in 2002 led to the creation of a mailing list with ad-
dresses of 87 interested researchers. As the form of the
competition itself took shape, potential participants were
asked to register in September 2003. Representatives from

22 groups (spread over 4 continents) signed up to receive the
first version of the PPDDL validation software.

In April 2004, we held a “mock competition” as a way
of identifying the most committed groups and for testing
our evaluation procedure. Six groups participated (groups
C (UMass), E (Dresden), G (ANU), J (Purdue), P (Simon
Bolivar) and, D (Bowdoin)). Several other groups expressed
regrets that their planners were not yet ready. As of this writ-
ing, several groups have explicitly pulled out of the com-
petition and 15 groups remain signed up. We’re expecting
between 5 and 10 groups to participate in the competition
within the next three weeks.

Domain Description Language
We intended the competition to be accessible to researchers
studying “factored” or first-order Markov decision processes
(extensions of MDPs to predicate-based state representa-
tions) and decision-theoretic planning (extensions of clas-
sical planning to uncertain effects and utilities). The state of
the art in evaluating classical planners is the IPC and their
choice of domain description languages is PDDL (Fox &
Long 2001). We sought to introduce a minimal set of exten-
sions to PDDL2.1 to support probabilistic effects. The prob-
abilistic planning domain description language (PPDDL1.0)
we developed is described in the following paper.

PPDDL1.0 extends PDDL2.1 to support the succinct rep-
resentation of Markov decision processes. However, for this
first competition, we decided to restrict the set of language
features that participants would need to support. Specifi-
cally, the evaluation domains included neither numeric state
variables nor hidden propositions. As such, there is a direct
conversion from the provided PPDDL specifications to finite
(though perhaps enormous) MDPs.

To support the programming efforts of the participants,
we provided C++ code for parsing PPDDL domains and
problems and an mtbdd-based converter from PPDDL to a
propositionalized MDP representation. We believe several
participants wrote their own parsers and converters and oth-
ers used our initial code to varying degrees.

Objectives
Each domain used in the competition came in one of two
possible styles. Ingoal-onlydomains, a goal specification

edelkamp
68

was provided and the objective of the planner was to reach a
goal state. Planners in these domains are evaluated by esti-
mating the probability that they will reach a goal state. Such
domains can be viewed as a type of MDP in which a unit
reward value is provided upon arrival in a goal state and all
other transitions result in zero reward.

The second, and more common, style of domain in the
competition was “reward goal” problems. These domains
include operators with state-independent cost, a goal spec-
ification, and a goal-reward value issued upon arrival in a
goal state. Although PPDDL supports positive and negative
state-dependent rewards as well as continuing tasks with no
terminating goal state, we thought restricting objectives as
described kept them as close as possible in spirit to the kinds
of objectives supported in the classical track.1 By assign-
ing goal rewards, each execution of a planner on a problem
terminates with a total reward value, with early termination
preferred to longer execution traces. Planners are compared
according to their total expected reward, computed as the
sum of the goal reward (if obtained) minus any action costs.

We also planned to support evaluation of “nondeterminis-
tic” domains. However, as no groups stepped up to partici-
pate in such a track, we did not pursue it.

Evaluation
In classical planning, a plan is a series of operators. A valid
plan is one that, when applied to the initial state, achieves the
goal. Because of the uncertainty in state transitions, straight-
line plans are often not appropriate in probabilistic domains.
Although several groups have expressed an intention to syn-
thesize only unconditional plans, we did not want to impose
any particular plan representation on participants.

We decided to evaluate planners by sampling or simula-
tion. That is, our plan validator is a server, and individual
planning/execution algorithms connect to the evaluator as
clients. They initiate a session by providing an agreed upon
domain id, receive an initial state, and return an operator.
The server-client dialog continues until a terminating con-
dition is reached at which point the validator evaluates the
performance of the planner. This entire process is repeated
several times with results averaged over the multiple runs.

Source code for a server (“mdpsim”) was provided to all
participants and updated as changes were made to the do-
main description language and evaluation procedure. For
official evaluations runs, a server was run at Rutgers with
participants connecting via the Internet. In trial runs, par-
ticipants reported communication times ranging from 20ms
(CMU) to 76ms (South America) to 230ms (Australia)
roundtrip. To compensate for the wide range of communica-
tion times, participants were offered the option of temporary
accounts at CMU to install and run their clients.

Based on feedback from the mock competition, we de-
cided to evaluate each planner in each domain in a 15-minute
block. During this block, planners can carry out any compu-
tation, pre-processing, or plan generation that they choose to
do. However, they must also execute 30 runs from an initial
state to a goal state (voluntary premature termination is also

1Thanks to Héctor Geffner for sharing this observation.

an option). The average reward obtained over these 30 runs
(with zero reward for any runs that were not taken) is the
planner’s evaluation score.

We chose 30 runs because this number may provide suffi-
cient statistical confidence to distinguish between planners.
We did not subdivide the 15 minutes into 30-second blocks
to allow participants to amortize planning effort over multi-
ple runs. We suspect that most planners will use the majority
of the 15 minutes to construct a plan and the remainder to
evaluate the plan 30 times. However, the evaluation proce-
dure supports a wide variety of strategies.

Domains
In the mock competition, we included 19 test problems:
blocksworld (5 5-block problems, 5 25-block problems,
and 5 125-block problems), one colored blocksworld prob-
lem, one fileworld problem, a variation of the coffee do-
main (Dearden & Boutilier 1997), and a variation of the
sandcastle problem (Majercik & Littman 1998). These in-
clude problems with and without functions and both goal-
only and reward-goal domains.

The blocksworld problems were created using a
blocksworld problem generator that we developed. It will
be available after the conference on the competition web-
site. We have also released a logistics domain generator we
call “boxworld”. Problems generated from the blocksworld
and boxworld generators will be included in the competition.
Because these generators were released in advance, partic-
ipants have the option of learning or hand-tuning rules for
their planners to exploit structure in these domains.

Several other domains will be included in the competi-
tion, to be distributed immediately prior to evaluation. All
domains we used for evaluation will be made available to
interested researchers. Visit our web site or contact us by
email for more information.

Acknowledgements
This work was supported in part by NSF grants IIS-0329153
and IIS-0315909. We thank the ICAPS and IPC organizers
for their support and encouragement and the participants for
their enthusiasm and creativity.

References
Dearden, R., and Boutilier, C. 1997. Abstraction and
approximate decision-theoretic planning.Artificial Intel-
ligence89(1–2):219–283.
Fox, M., and Long, D. 2001. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Techni-
cal report, University of Durham, UK.
Littman, M. L.; Goldsmith, J.; and Mundhenk, M. 1998.
The computational complexity of probabilistic planning.
Journal of Artificial Intelligence Research9:1–36.
Majercik, S. M., and Littman, M. L. 1998. MAXPLAN:
A new approach to probabilistic planning. In Simmons,
R.; Veloso, M.; and Smith, S., eds.,Proceedings of the
Fourth International Conference on Artificial Intelligence
Planning, 86–93. AAAI Press.

edelkamp
69

PPDDL1.0: The Language for the Probabilistic Part of IPC-4

Håkan L. S. Younes
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213, USA

lorens@cs.cmu.edu

Michael L. Littman
Department of Computer Science

Rutgers University
Piscataway, NJ 08854, USA

mlittman@cs.rutgers.edu

Introduction
A standard domain description language, PDDL (Ghallabet
al. 1998; McDermott 2000; Fox & Long 2003), for deter-
ministic planning domains has simplified sharing of domain
models and problems in the planning community, and has
enabled direct comparisons of different planning systems.
As a result, there has been considerable progress in plan-
ning research with deterministic domain models since the
first International Planning Competition in 1998.

The 4th International Planning Competition includes a
probabilistic track for the first time in an attempt to create
a common platform for the evaluation of probabilistic and
decision-theoretic planning systems. This document briefly
describes the input language, PPDDL1.0, that was used for
the probabilistic track. PPDDL1.0 is essentially a syntac-
tic extension of levels 1 and 2 of PDDL2.1 (Fox & Long
2003). We assume that the reader is familiar with PDDL2.1,
so focus on the new language features, which include prob-
abilistic effects and rewards. The semantics of a PPDDL1.0
planning problem is given in terms of a Markov decision
process (Howard 1960).

Note that, unlike PDDL2.1, we do not impose a specific
structure on plans in PPDDL1.0. Planning systems are eval-
uated using a client-server model in the probabilistic track of
the competition. During evaluation of a planner, the server
send a state to the client (planning system), which in return
sends an action to be executed in the given state. The prob-
lem of plan representation is left entirely to the planning sys-
tems.

Probabilistic Effects
In order to define probabilistic and decision-theoretic plan-
ning problems, we need to add support for probabilistic ef-
fects. The syntax for probabilistic effects is

(probabilistic p1 e1 . . . pk ek)

meaning that effectei occurs with probabilitypi. We require
that the constraintspi ≥ 0 and

∑k
i=1 pi = 1 are fulfilled: a

probabilistic effect declares an exhaustive set of probability-
weighted outcomes. However, we allow a probability-effect
pair to be left out if the effect is empty. In other words,

(probabilistic p1 e1 . . . pl el)

with
∑l

i=1 pi ≤ 1 is syntactic sugar for

Name Type Init 1 Init 2
bomb-in-packagepackage1 boolean true false
bomb-in-packagepackage2 boolean false true
toilet-clogged boolean false false
bomb-defused boolean false false

Table 1: State variables and their initial values for the
“Bomb and Toilet” problem.

(probabilistic p1 e1 . . . pl el q (and))

with q = 1−∑l
i=1 pi. For example, the effect

(probabilistic 0.9 (clogged))

means that with probability0.9 the state variableclogged
becomes true in the next state, while with probability0.1 the
state remains unchanged. Outcomes are not required to be
mutually exclusive. A new requirements flag is introduced
to signal that support for probabilistic effects is required:

:probabilistic-effects

Figure 1 shows an encoding in PPDDL of the “Bomb
and Toilet” example described by Kushmerick, Hanks, &
Weld (1995). In this problem, there are two packages,
one of which contains a bomb. The bomb can be defused
by dunking the package containing the bomb in the toilet.
There is a0.05 probability of the toilet becoming clogged
when a package is placed in it. The problem definition in
Figure 1 also shows that initial conditions in PPDDL can
be probabilistic. In this particular example we define two
possible initial states with equal probability (0.5) of be-
ing the true initial state. Table 1 lists the state variables
for the “Bomb and Toilet” problem and their values in the
two possible initial states. Intuitively, we can think of the
initial conditions of a PPDDL planning problem as being
the effects of an action forced to be scheduled right before
time 0. Also, note that the goal of the problem involves
negation, which is why the problem definition declares the
:negative-preconditions requirements flag.

PPDDL allows arbitrary nesting of conditional and prob-
abilistic effects. This is in contrast to popular propositional
encodings, such as probabilistic STRIPS operators (PSOs)
(Kushmerick, Hanks, & Weld 1995) and factored PSOs
(Dearden & Boutilier 1997), which do not allow conditional
effects nested inside probabilistic effects. While arbitrary

edelkamp

edelkamp
 70

(define (domain bomb-and-toilet)
(:requirements :conditional-effects :probabilistic-effects)
(:predicates (bomb-in-package ?pkg) (toilet-clogged) (bomb-defused))
(:action dunk-package

:parameters (?pkg)
:effect (and (when (bomb-in-package ?pkg) (bomb-defused))

(probabilistic 0.05 (toilet-clogged)))))

(define (problem bomb-and-toilet)
(:domain bomb-and-toilet)
(:requirements :negative-preconditions)
(:objects package1 package2)
(:init (probabilistic 0.5 (bomb-in-package package1)

0.5 (bomb-in-package package2)))
(:goal (and (bomb-defused) (not (toilet-clogged)))))

Figure 1: PPDDL encoding of “Bomb and Toilet” example.

nesting does not add to the expressiveness of the language,
it can allow for exponentially more compact representations
of certain effects given the same set of state variables and ac-
tions (Rintanen 2003). However, any PPDDL action can be
translated into asetof PSOs with at most a polynomial in-
crease in size of the representation. Consequently, it follows
from the results of Littman (1997) that PPDDL is represen-
tationally equivalent to dynamic Bayesian networks (Dean
& Kanazawa 1989), which is another popular representation
for MDP planning problems.

Rewards and Plan Objectives
Markovian rewards, associated with state transitions, can be
encoded using fluents. PPDDL reserves the fluentreward ,
accessed as(reward) or reward , to represent the total
accumulated reward since the start of execution. Rewards
are associated with state transitions through update rules in
action effects. The use of thereward fluent is restricted to
action effects of the form

(〈additive-op〉 〈reward fluent〉 〈f-exp〉)

where 〈additive-op〉 is either increase or decrease ,
and 〈f-exp〉 is a numeric expression not involvingreward .
Action preconditions and effect conditions are not allowed
to refer to thereward fluent, which means that the accu-
mulated reward does not have to be considered part of the
state space. The initial value ofreward is zero. These re-
strictions on the use of thereward fluent allow a planner to
handle domains with rewards, without having to implement
full support for fluents.

The requirements flag,:rewards , is introduced to sig-
nal that support for Markovian rewards is required. Do-
mains that require both probabilistic effects and rewards
can declare the:mdp requirements flag, which implies
:probabilistic-effects and:rewards .

Figure 2 shows part of the PPDDL encoding of a coffee
delivery domain described by Dearden & Boutilier (1997).
A reward of 0.8 is awarded if the user has coffee when
the “buy-coffee” action is executed, and a reward of0.2
is awarded when “buy-coffee” is executed in a state where

is-wet is false. Note that a total reward of1.0 can be
awarded as a result of executing the “buy-coffee” action if
it is executed in a state where bothuser -has-coffee and
¬is-wet hold.

Action effects with inconsistent transition rewards are not
permitted. For example, the effect(probabilistic
0.5 (increase (reward) 1)) is semantically in-
valid because it associates a reward of both1 and 0 to a
self-transition.

Regular PDDL goals are used to express goal-type per-
formance objectives. A goal statement(:goal φ) for a
probabilistic planning problem encodes the objective that
the probability of achievingφ should be maximized, unless
an explicit optimization metric is specified for the planning
problem.

For planning problems instantiated from a domain declar-
ing the :rewards requirement, the default plan objective
is to maximize the expected reward. A goal statement in the
specification of a reward oriented planning problem identi-
fies a set of absorbing states. In addition to transition re-
wards specified in action effects, it is possible to associate a
one-time reward for entering a goal state. This is done using
the(:goal-reward f) construct, wheref is a numeric
expression.

In general, a statement(:metric maximize f) in a
problem definition means that the expected value off should
be maximized. PPDDL definesgoal-probability as
a special optimization metric that can be used to explicitly
specify that the plan objective is to maximize (or minimize)
the probability of goal achievement.

Formal Semantics
We present a formal semantics for PPDDL planning prob-
lems in terms of a mapping to a probabilistic transition sys-
tem with rewards. A planning problem defines a set of state
variablesV , possibly containing both Boolean and numeric
state variables. An assignment of values to state variables
defines a state, and the state spaceS of the planning prob-
lem is the set of states representing all possible assignments
of values to variables. In addition toV , a planning prob-

edelkamp
71

(define (domain coffee-delivery)
(:requirements :negative-preconditions :disjunctive-preconditions

:conditional-effects :mdp)
(:predicates (in-office) (raining) (has-umbrella) (is-wet)

(has-coffee) (user-has-coffee))
(:action buy-coffee

:effect (and (when (not (in-office)) (probabilistic 0.8 (has-coffee)))
(when (user-has-coffee) (increase (reward) 0.8))
(when (not (is-wet)) (increase (reward) 0.2))))

...)

Figure 2: Part of PPDDL encoding of “Coffee Delivery” domain.

lem defines an initial-state distributionp0 : S → [0, 1] with∑
s∈S p0(s) = 1 (i.e. p0 is a probability distribution over

states), a formulaφ overV characterizing a set of goal states
G = {s | s |= φ}, a one-time rewardrG associated with en-
tering a goal state, and a set of actionsA instantiated from
PPDDL action schemata. For goal-directed planning prob-
lems, without explicit rewards, we userG = 1.

An actiona ∈ A consists of a preconditionφa and an
effect ea. Action a is applicable in a states if and only if
s |= φa. It is an error to applya to a state such thats 6|=
φa. This is consistent with the semantics of PDDL2.1 (Fox
& Long 2003) and permits the modeling of forced chains
of actions. Effects are recursively defined as follows (cf.
Rintanen 2003):

1. > is the null-effect, represented in PPDDL by(and) .

2. b and¬b are effects ifb ∈ V is a Boolean state variable.

3. x ← f is an effect ifx ∈ V is a numeric state variable
andf is a real-valued function on numeric state variables.

4. r ↑ f is an effect iff is a real-valued function on numeric
state variables.

5. e1 ∧ . . . ∧ en is an effect ife1, . . . , en are effects.

6. c�e is an effect ifc is a formula overV ande is an effect.

7. p1e1| . . . |pnen is an effect ife1, . . . , en are effects,pi ≥ 0
for all i ∈ {1, . . . , n}, and

∑n
i=1 pi = 1.

Items 2 through 4 are referred to assimple effect. The effect
b sets the Boolean state variableb to true in the next state,
while ¬b setsb to false in the next state. Forx ← f , the
value off in the current state becomes the value of the nu-
meric state variablex in the next state. Effects of the form
r ↑ f are used to associate rewards with transitions as de-
scribed below.

An actiona = 〈φa, ea〉 defines a transition probability
matrixPa and a transition reward matrixRa, with pa

ij being
the probability of transitioning to statej when applyinga
in statei, andra

ij being the reward associated with the state
transition fromi to j when caused bya. We can compute
Pa andRa by first translatingea into an effect of the form
p1e1| . . . |pnen, where eachei is a deterministic effect. Rin-
tanen (2003) calls this form Unary Nondeterminism Normal
Form. Any effecte can be translated into this form by using
the top four equivalences in Figure 3.

We further rewrite the effect of an action by translating
eachei into an effect of the form(ci1 � ei1) ∧ . . .∧ (cini

�

eini
), where eacheij is a conjunction of simple effects and

the conditions are mutually exclusive and exhaustive (i.e.
cij ∧ cik ≡ ⊥ for all j 6= k and

∨ni

j=1 cij ≡ >). The bottom
four equivalences in Figure 3 allow us to perform the desired
translation.

An effect of the formc � e, wheree is a conjunction of
simple effects, defines a set of state transitions. We assume
that e is consistent. Actions with inconsistent effects are
not valid PPDDL actions, and care should be taken when
designing a PPDDL domain to ensure that no instantiations
of action schemata can have inconsistent effects. A con-
junction of simple effects is inconsistent if it contains both
b and¬b, or multiplenon-commutativeupdates of a single
numeric state variable. Two effectsx ← f andx ← f ′ are
commutative iff(s[x = f ′(s)]) = f ′(s[x = f(s)]), where
f(s) is the value off evaluated in states ands[x = y] de-
notes a state with all state variables having the same value
as in states, except forx which has valuey, i.e. numeric
effects are commutative if they are insensitive to ordering.
Under these assumptions, the following function can be de-
fined:

τ(s, s′,>)=̇s′

τ(s, s′, b)=̇s′[b = >]

τ(s, s′,¬b)=̇s′[b = ⊥]

τ(s, s′, x← f)=̇s′[x = f(s)]

τ(s, s′, r ↑ f)=̇s′

τ(s, s′, e1 ∧ e2)=̇τ(s, τ(s, s′, e1), e2)

We can useτ to describe the set of state transitions defined
by the effectc � e:

T (c � e) = {〈s, s′〉|s |= c ands′ = τ(s, s, e)}.
Given this definition ofT (c � e), we can compute a tran-
sition matrixTij for eachcij � eij . The element at rows
and columns′ of Tij is 1 if 〈s, s′〉 ∈ T (cij � eij), and0
otherwise. Since we have ensured that the conditionscij are
mutually exclusive, we getPa =

∑n
i=1 piTi as the transi-

tion probability matrix for actiona, whereTi =
∑ni

j=1 Tij .
Finally, we need to make all states that satisfy the goal con-
dition φ of the problem absorbing. This is accomplished by
modifying Pa: for eachs such thats |= φ, we set the entry
at rows and columns to 1 and the remaining entries on the
same row to0.

edelkamp
72

e ≡1e

e ∧ (p1e1| . . . |pken) ≡p1(e ∧ e1)| . . . |pn(e ∧ en)
c � (p1e1| . . . |pnen) ≡p1(c � e1)| . . . |pn(c � en)

p1(p′1e
′
1| . . . |p′ke′k)|p2e2| . . . |pnen ≡(p1p

′
1)e1| . . . |(p1p

′
k)e′k|p2e2| . . . |pnen

e ≡>� e

c � e ≡(c � e) ∧ (¬c �>)

c � (c′ � e) ≡(c ∧ c′) � e

(c1 � e1) ∧ (c2 � e2) ≡((c1 ∧ c2) � (e1 ∧ e2)) ∧ ((c1 ∧ ¬c2) � e1)
∧ ((¬c1 ∧ c2) � e2) ∧ ((¬c1 ∧ ¬c2) �>)

Figure 3: Effect equivalences.

The reward associated with a conjunction of simple ef-
fects can be defined as follows:

r(s,>)=̇0
r(s, b)=̇0

r(s,¬b)=̇0
r(s, x← f)=̇0
r(s, r ↑ f)=̇f(s)

r(s, e1 ∧ e2)=̇r(s, e1) + e(s, e2)

The effectcij � eij associates rewardr(s, eij) with each
transition〈s, s′〉 ∈ T (cij � eij). We define a transition re-
ward matrixRij for cij � eij . The element at rows and
columns′ of Rij is r(s, eij) for s′ = τ(s, s, eij) and0 if
〈s, s′〉 6∈ Tij . We then sum over allcij � eij to get a transi-
tion reward matrix forei: Ri =

∑ni

j=1 Rij .
The same transition may occur in multiple outcomes of

the effectp1e1| . . . |pnen, and we require the reward for a
specific transition to be consistent across outcomes. Let•
represent the fact that the reward is undefined for a transi-
tion. We defineR̃i to beRi with an element at rows and
columns′ set to• if the element at rows and columns′ of
Ti is zero (i.e.ei does not define a transition froms to s′).
We define an element-wise matrix operator� as follows:

• � x=̇x

x� •=̇x

x� x=̇x

x� y=̇error if x 6= y

We can now define the transition reward matrix for actiona:
Ra = RG +

⊙n
i=1 R̃i. RG represents the one-time reward

associated with goal states. The entry at rows and column
s′ of RG is set torG if s 6|= φ ands′ |= φ, and0 otherwise.
The transition reward matrix is well-defined if and only if
the transition rewards are consistent across all outcomes of
an action.

References
Dean, T., and Kanazawa, K. 1989. A model for reason-
ing about persistence and causation.Computational Intel-

ligence5(3):142–150.
Dearden, R., and Boutilier, C. 1997. Abstraction and
approximate decision-theoretic planning.Artificial Intel-
ligence89(1–2):219–283.
Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains.Journal
of Artificial Intelligence Research20:61–124.
Ghallab, M.; Howe, A. E.; Knoblock, C. A.; McDermott,
D.; Ram, A.; Veloso, M. M.; Weld, D. S.; and Wilkins,
D. 1998. PDDL—the planning domain definition lan-
guage. Technical Report CVC TR-98-003/DCS TR-1165,
Yale Center for Computational Vision and Control, New
Haven, CT.
Howard, R. A. 1960.Dynamic Programming and Markov
Processes. New York, NY: John Wiley & Sons.
Kushmerick, N.; Hanks, S.; and Weld, D. S. 1995. An
algorithm for probabilistic planning.Artificial Intelligence
76(1–2):239–286.
Littman, M. L. 1997. Probabilistic propositional plan-
ning: Representations and complexity. InProc. Fourteenth
National Conference on Artificial Intelligence, 748–754.
Providence, RI: American Association for Artificial Intel-
ligence.
McDermott, D. 2000. The 1998 AI planning systems com-
petition. AI Magazine21(2):35–55.
Rintanen, J. 2003. Expressive equivalence of formalism
for planning with sensing. In Giunchiglia, E.; Muscettola,
N.; and Nau, D. S., eds.,Proc. Thirteenth International
Conference on Automated Planning and Scheduling, 185–
194. Trento, Italy: AAAI Press.

edelkamp
73

mGPT: A Probabilistic Planner based on Heuristic Search

Blai Bonet
Departamento de Computación

Universidad Simón Boĺıvar
Caracas, Venezuela
bonet@ldc.usb.ve

Héctor Geffner
Departament de Tecnologia
Universitat Pompeu Fabra
Barcelona 08003, España

hector.geffner@tecn.upf.es

Abstract

We describe the version of the GPT planner to be
used in the planning competition. This version,
called mGPT, solves mdps specified in the ppddl

language by extracting and using different classes of
lower bounds, along with various heuristic-search al-
gorithms. The lower bounds are extracted from de-
terministic relaxations of the mdp where alternative
probabilistic effects of an action are mapped into
different, independent, deterministic actions. The
heuristic-search algorithms, on the other hand, use
these lower bounds for focusing the updates and deliv-
ering a consistent value function over all states reach-
able from the initial state with the greedy policy.

Introduction

mGPT is a planner based on heuristic search for
solving mdp models specified in the high-level plan-
ning language ppddl. mGPT captures a fragment
of the functionality of the GPT system that fea-
tures non-determinism and incomplete information, in
both qualitative and probabilistic forms, like pomdps
and Conformant planning (Bonet & Geffner 2001a;
Bonet & Thiébaux 2003).

mGPT supports several algorithms and heuristic
functions (lower bounds) that when combined generate
a wide range of different solvers. The two main algo-
rithms are lrtdp and hdp. Both are heuristic-search
algorithms that make use of a given initial state s0 and
lower bound information. More precisely, they com-
pute a value function V with a residual bounded by a
user-provided threshold over all states reachable from
s0 when using the greedy policy πV (Bonet & Geffner
2003b; 2003a).

The lower bounds are derived by solving relax-
ations of the input problem with an algorithms pro-
vided by mGPT. Since these algorithms are also based
on heuristic search, we have implemented “stackable”
components that are created in sequence for computing
complex heuristic functions from simpler ones.

In this short document, we describe the features
of the mGPT planner. This document is organized
as follows. In the following two sections, we give a

brief description of the most important algorithms and
heuristics functions implemented in mGPT. Then, we
describe how these algorithm and heuristics can com-
bined in order to generate a wide range of different
solvers. We conclude with a short discussion.

Algorithms

We divide the algorithms in two groups of optimal and
suboptimal algorithms.

An optimal algorithm is one that computes an ε-
consistent value function V over all states reachable
from the initial state s0 with the greedy policy with
respect to V , denoted as πV . A value function V is
ε-consistent at state s if it residual at s is less than or
equal to ε. It is known that if V is 0-consistent over all
states reachable from s0 with πV , then πV is optimal,
as well as if V is ε-consistent for a sufficiently small ε.
Here ε is a user-provided parameter.

The suboptimal algorithms, on the other hand, are
provided in order to interleave planning and execution.
In this group, we include algorithms that start selecting
actions with respect to an initial lower bound (heuris-
tic) that is improved over time.

(Although our main interest is towards optimal algo-
rithms, we have included the suboptimal ones in order
to cope with the format of the competition.)

The main optimal algorithms are vi, lrtdp and hdp,
whilst the suboptimal ones are asp and hdp-i. In the
following, we give a brief description and references for
these algorithms.

The Value Iteration algorithm (vi) solves the prob-
lem in two steps. First, it generates the reachable state
space from the initial state and the applicable opera-
tors, and second, uses the Value Iteration algorithm
to obtain an optimal solution for the problem. vi is
included in mGPT as a bottom-line reference.

Labeled Real-Time Dynamic Programming (lrtdp)
is a heuristic-search algorithm that implements a la-
beling scheme on top of the rtdp algorithm (Barto,
Bradtke, & Singh 1995). lrtdp works by performing
simulated trials that start at the initial state and end
at “solved” states by selecting actions with respect to
πV . Initially, V is the input heuristic function, and

edelkamp
74

the only solved states are the goal states. Then, each
time an action is picked at state s, the value of s is
updated by making its value consistent with the value
of its successor states. At the end of each trial, a label-
ing procedure is called that checks whether new states
can be labeled as solved: a state is solved if its value
and the value of all its descendents are ε-consistent.
The algorithm ends when the initial state is labeled
solved since, at that time, all states reachable from s0

with πV are consistent. As shown in (Bonet & Geffner
2003b), this labeling mechanism adds a crisp termina-
tion condition to rtdp that features faster convergence
time while retaining its good anytime behavior.

Since πV , the policy returned by lrtdp, is only guar-
anteed to be optimal over a subset of states, i.e. s0 and
those reachable from it, then πV is said to be a partial
optimal policy closed with respect to s0.

Heuristic Dynamic Programming (hdp) is also a
heuristic-search algorithm that computes a partial op-
timal policy closed with respect to s0. The hdp al-
gorithm works by performing depth-first searches in
state space looking for ε-inconsistent states, and then
updating their values to make them consistent. The
searches are stopped when no inconsistent states are
found (Bonet & Geffner 2003a).

Action Selection for Planning (asp) is a reactive al-
gorithm that starts by selecting actions with respect
to the input heuristic function. Each time an action
is needed for state s, asp performs multiple depth-
bounded rtdp-like trials starting at s before return-
ing an action for s. These simulations implement a
bounded-lookahead mechanism that improve the ac-
tion selection task. This asp algorithm is a general-
ization of (Bonet, Loerincs, & Geffner 1997) for prob-
abilistic planning.

Approximated Heuristic DP (hdp-i) is a heuristic-
search algorithm that like hdp performs searches and
updates. Unlike hdp, the hdp-i algorithm only en-
forces consistency over all states reachable from s0 with
plausibility no smaller than i. These plausibility lev-
els form a qualitative scale based on kappa rankings
(Spohn 1988; Pearl 1993) that quantify how improb-
able is to make a transition from the initial state to
the given state. The hdp-i algorithm and some of its
properties are described in (Bonet & Geffner 2003a).

Heuristics

The heuristics functions are also divided in two groups
of admissible and non-admissible heuristics. An ad-
missible heuristic is one that never overestimates the
optimal cost, i.e. a lower bound. The main admissible
heuristics are zero, min-min, atom-min-forward and
atom-min-backward, whilst the main non-admissible
heuristic is ff. All these heuristic are computed by
solving deterministic relaxations of the input problem.
In the case of admissible heuristics, these relaxations
must be solved optimally (Pearl 1983).

The most important relaxations are the weak and

strong relaxations. The weak relaxation is computed
by transforming the input problem into a deterministic
problem in which every operator of the form

〈 prec, [p1 : α1, . . . , pn : αn] 〉 , (1)

where prec is the precondition and αi is the i-th effect
with probability pi, is translated into the n determin-
istic and independent operators 〈 prec, αi 〉.

It is not hard to show that the optimal solution for
the weak relaxation is a lower bound one the optimal
solution for the original problem.

The strong relaxation is a strips problem computed
by firstly transforming the input into a problem in
which every operator is of the form

〈 prec, [p1 : (add1, del1), . . . , pn : (addn, deln)] 〉 (2)

where prec, add1, . . . , deln are all conjunctions of lit-
erals and

∑
i
pi = 1. Observe that in order to take

the input problem into the form given by (2), we must
remove disjunctive preconditions, conditional effects,
quantifier symbols, etc. The strong relaxation is then
generated by translating each operator (2) into the n
deterministic and independent strips operators

〈 prec, addi, deli 〉 . (3)

As before, it is not hard to show that the optimal solu-
tion for the strong relaxation is a lower bound on the
optimal solution for the original problem.

In the following, we give a brief description of the
different heuristic and their relation to the relaxations.

The Min-Min (min-min) heuristic is the optimal so-
lution to the deterministic problem given by the weak
relaxation. Two flavors are provided: min-min-lrtdp
that solves the relaxation with a deterministic version
of lrtdp (a.k.a. lrta (Korf 1990)), and min-min-ida*

that solves the relaxation with ida*. Both versions are
lazy in the sense that the values are computed on a
need basis as the planner requires them. See (Bonet
& Geffner 2003b; 2003a) for references. (Since the
min-min heuristic is computed with a heuristic-search
algorithm, another heuristic function is required for its
computation. Below, we describe how to specify these
multiple heuristics.)

Atom-Min Forward (atom-min-forward) is a heuris-
tic function computed in atom space from the strong
relaxation. atom-min-forward computes “costs” of
reaching set of atoms of fixed cardinality from a given
state. The name forward comes from the fact that
the costs are computed by a forward-chaining proce-
dure that begins with the given state and ends when
the goal is generated. This heuristic is a generaliza-
tion of the hmin heuristic in HSP (Bonet & Geffner
2001b). As in min-min, the heuristic values are com-
puted on demand. atom-min-k-forward refers to the
atom-min-forward heuristic for sets of cardinality k.
The atom-min-forward heuristic is from (Haslum &
Geffner 2000).

Atom-Min Backward (atom-min-backward) is a
heuristic similar to atom-min-forward except that it

edelkamp

edelkamp
75

computes costs of reaching sets of atoms from the goal
state in an inverted version of the strong relaxation.
Thus, before the search starts, all costs for all sets of
atoms of fixed cardinality are computed and stored in a
table that are later used to compute the heuristic func-
tion. The inverted relaxation is described in (Bonet &
Geffner 2001b).

The FF (ff) heuristic implements the heuristic func-
tion used in the FF planner with respect to the strong
relaxation (Hoffmann & Nebel 2001). This heuristic is
informative but non-admissible and can only be used
for non-optimal planning.

Combining Algorithms and Heuristics

The main parameters for mGPT are “-p <planner>”
that specify the algorithm to use for the planner, “-h
<heuristics>” that specify the heuristic function, and
“-e <epsilon>” that specify the threshold ε for the
consistency check.

One typical call looks like

mGPT -p lrtdp \
-h "atom-min-1-forward" \
-e .001 <rest>

which instructs mGPT to use the lrtdp algorithm
with the atom-min-1-forward heuristic and ε = 0.001.
Since the algorithm is optimal and the heuristic is ad-
missible, this call produces an optimal policy. The
atom-min-1-forward heuristic is admissible but very
weak. The following example shows how to use the
min-min-lrtdp heuristic using atom-min-1-forward
as the base heuristic:

mGPT -p lrtdp \
-h "atom-min-1-forward|min-min-lrtdp" \
-e .001 <rest>

Note how the pipe symbol is used to stack the compo-
nents of the heuristic function.

Another possibility is to use mGPT as a reactive
planner in which decisions are taken on-line with re-
spect to a heuristic function that is improved over time.
For example,

mGPT -p asp -h "ff" <rest>

uses the asp algorithm with the ff heuristic, while

mGPT -p asp -h "zero|min-min-ida*" \
-e .001 <rest>

uses the asp algorithm with the min-min-ida* heuris-
tic computed from the constant-zero heuristic. In the
first case, the heuristic being used is non-admissible,
so the planner will deliver a suboptimal policy. In the
latter case, the asp algorithm is seeded with an ad-
missible heuristic so it is guaranteed to converge to a
partial optimal policy as the number of trials increase.

Other combinations of algorithms and heuristics are
possible. mGPT also implements other heuristic func-
tions and parameters to control number of simulation
trials and cutoff length for asp, initial hash size, heuris-
tic weight, dead-end value, verbosity level, etc.

Discussion

At the moment of writing these pages, it is not clear
for us which combination of algorithm and heuristic is
going to be used during the competition. Moreover, we
could enter the competition either with a fixed choice,
or with a more complex planner that picks a choice
upon an analysis of the input problem. In any case, we
plan to evaluate (after the competition) the different
choices separately in order to obtain meaningful data
for future research.

The mGPT planner will be publicly available after
the competition with the default settings correspond-
ing to those actually used.

Acknowledgements We thank the chairs of ipc-4

for making this competition possible. mGPT was built
upon a source code developed by John Asmuth from
CMU and distributed by the organizers.

References

Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning
to act using real-time dynamic programming. Artifi-
cial Intelligence 72:81–138.

Bonet, B., and Geffner, H. 2001a. GPT: a tool for
planning with uncertainty and partial information. In
Proc. IJCAI/Workshop on Planning with Uncertainty
and Partial Information, 82–87.

Bonet, B., and Geffner, H. 2001b. Planning as heuris-
tic search. Artificial Intelligence 129(1–2):5–33.

Bonet, B., and Geffner, H. 2003a. Faster heuristic
search algorithms for planning with uncertainty and
full feedback. In Proc. IJCAI-03, 1233–1238.

Bonet, B., and Geffner, H. 2003b. Labeled RTDP:
Improving the convergence of real-time dynamic pro-
gramming. In Proc. ICAPS-03, 12–21.

Bonet, B., and Thiébaux, S. 2003. GPT meets PSR.
In Proc. ICAPS-03, 102–111.

Bonet, B.; Loerincs, G.; and Geffner, H. 1997. A
robust and fast action selection mechanism for plan-
ning. In Proc. AAAI-97, 714–719.

Haslum, P., and Geffner, H. 2000. Admissible heuris-
tic for optimal planning. In Proc. AIPS-2000, 140–
149.

Hoffmann, J., and Nebel, B. 2001. The FF plan-
ning system: Fast plan generation through heuris-
tic search. Journal of Artificial Intelligence Research
14:253–302.

Korf, R. 1990. Real-time heuristic search. Artificial
Intelligence 42(2–3):189–211.

Pearl, J. 1983. Heuristics. Morgan Kaufmann.

Pearl, J. 1993. From conditional oughts to qualitative
decision theory. In Proc. UAI-93, 12–22.

Spohn, W. 1988. A general non-probabilistic theory
of inductive reasoning. In Proc. UAI-88, 149–158.

edelkamp
76

edelkamp

Symbolic Heuristic Search for Probabilistic Planning

Zhengzhu Feng
Department of Computer Science

University of Massachusetts
Amherst, MA 01003

fengzz@cs.umass.edu

Eric A. Hansen
Department of Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

hansen@cse.msstate.edu

Abstract

We describe a planner that participates in the Probabilis-
tic Planning Track of the 2004 International Planning Com-
petition. Our planner integrates two approaches to solving
Markov decision processes with large state spaces. State ab-
straction is used to avoid evaluating states individually. For-
ward search from a start state, guided by an admissible heuris-
tic, is used to avoid evaluating all states.

Introduction
The 2004 International Planning Competition introduces,
for the first time, a probabilistic planning track. The under-
lining model of the planning problem is essentially a Markov
decision process (MDP), and is encoded using an extension
of the PDDL language, called the Probabilistic PDDL. Clas-
sic dynamic programming algorithms solve MDPs in time
polynomial in the size of the state space. However, the
size of the state space grows exponentially with the number
of features describing the problem. This “state explosion”
problem limits use of the MDP framework, and overcoming
it has become an important topic of research.

Over the past several years, approaches to solving MDPs
that do not rely on complete state enumeration have been
developed. One approach exploits a feature-based (or fac-
tored) representation of an MDP to create state abstractions
that allow the problem to be represented and solved more
efficiently (Dearden & Boutilier 1997; Hoey et al. 1999;
and many others). Another approach limits computation
to states that are reachable from the starting state(s) of the
MDP (Barto, Bradtke, & Singh 1995; Dean et al. 1995;
Hansen & Zilberstein 2001). Our planner integrates these
approaches in a unifying framework using symbolic model-
checking techniques, based on the symbolic LAO* and sym-
bolic RTDP algorithms we previously developed (Feng &
Hansen 2002; Feng, Hansen, & Zilberstein 2003). In this
paper we present a brief summary of these algorithms.

Factored MDPs and decision diagrams
A Markov decision process (MDP) is defined as a tuple
(S, A, P, R) where: S is a set of states; A is a set of ac-
tions; P is a set of transition models P a : S × S → [0, 1],
one for each action, specifying the transition probabilities of
the process; and R is a set of reward models Ra : S → <,

one for each action, specifying the expected reward for tak-
ing action a in each state. We consider MDPs for which the
objective is to find a policy π : S → A that maximizes to-
tal discounted reward over an infinite (or indefinite) horizon,
where γ ∈ [0, 1] is the discount factor. (We allow a discount
factor of 1 for indefinite-horizon problems only, that is, for
MDPs that terminate after a goal state is reached.)

In a factored MDP, the set of states is described by a set of
random variables X = {X1, . . . , Xn}. Without loss of gen-
erality, we assume these are Boolean variables. A particular
instantiation of the variables corresponds to a unique state.
Because the set of states S = 2X grows exponentially with
the number of variables, it is impractical to represent the
transition and reward models explicitly as matrices when the
number of states variables is large. Instead we follow Hoey
et al.(1999) in using algebraic decision diagrams to achieve
a more compact representation.

Algebraic decision diagrams (ADDs) are a generalization
of binary decision diagrams (BDDs), a compact data struc-
ture for Boolean functions used in symbolic model checking.
A decision diagram is a data structure (corresponding to an
acyclic directed graph) that compactly represents a mapping
from a set of Boolean state variables to a set of values. A
BDD represents a mapping to the values 0 or 1. An ADD
represents a mapping to any finite set of values. To repre-
sent these mappings compactly, decision diagrams exploit
the fact that many instantiations of the state variables map
to the same value. In other words, decision diagrams ex-
ploit state abstraction. BDDs are typically used to represent
the characteristic functions of sets of states and the tran-
sition functions of finite-state automata. ADDs can repre-
sent weighted finite-state automata, where the weights cor-
respond to transition probabilities or rewards, and thus are
an ideal representation for MDPs.

Hoey et al. (1999) describe how to represent the transi-
tion and reward models of a factored MDP compactly using
ADDs. We adopt their notation and refer to their paper for
details of this representation. Let X = {X1, . . . , Xn} rep-
resent the state variables at the current time and let X

′ =
{X ′

1, . . . , X
′

n} represent the state variables at the next step.
For each action, an ADD P a(X,X′) represents the transi-
tion probabilities for the action. Similarly, the reward model
Ra(X) for each action a is represented by an ADD. The ad-
vantage of using ADDs to represent mappings from states

edelkamp
77

(and state transitions) to values is that the complexity of op-
erators on ADDs depends on the number of nodes in the
diagrams, not the size of the state space. If there is sufficient
regularity in the model, ADDs can be very compact, allow-
ing problems with large state spaces to be represented and
solved efficiently.

Symbolic LAO* algorithm
LAO* (Hansen & Zilberstein 2001) is an extension of the
classic search algorithm AO* that can find solutions with
loops. This makes it possible for LAO* to solve MDPs,
since a policy for an infinite-horizon MDP allows both con-
ditional and cyclic behavior. Like AO*, LAO* has two al-
ternating phases. First, it expands the best partial solution
(or policy) and evaluates the states on its fringe using an ad-
missible heuristic function. Then it performs dynamic pro-
gramming on the states visited by the best partial solution,
to update their values and possibly revise the currently best
partial solution. The two phases alternate until a complete
solution is found, which is guaranteed to be optimal.

AO* and LAO* differ in the algorithms they use in the dy-
namic programming step. Because AO* assumes an acyclic
solution, it can perform dynamic programming in a single
backward pass from the states on the fringe of the solution
to the start state. Because LAO* allows solutions with cy-
cles, it relies on an iterative dynamic programming algo-
rithm (such as value iteration or policy iteration). In orga-
nization, the LAO* algorithm is similar to the “envelope”
dynamic programming approach to solving MDPs (Dean et
al. 1995). It is also closely related to RTDP (Barto, Bradtke,
& Singh 1995), which is an on-line (or “real time”) search
algorithm for MDPs, in contrast to LAO*, which is an off-
line search algorithm.

We call our generalization of LAO* a symbolic search al-
gorithm because it manipulates sets of states, instead of indi-
vidual states. In keeping with the symbolic model-checking
approach, we represent a set of states S by its characteristic
function χS , so that s ∈ S ⇐⇒ χS(s) = 1. We repre-
sent the characteristic function of a set of states by an ADD.
(Because its values are 0 or 1, we can also represent a char-
acteristic function by a BDD.) From now on, whenever we
refer to a set of states, S, we implicitly refer to its character-
istic function, as represented by a decision diagram.

In addition to representing sets of states as ADDs, we rep-
resent every element manipulated by the LAO* algorithm as
an ADD, including: the transition and reward models; the
policy π : S → A; the state evaluation function V : S → <
that is computed in the course of finding a policy; and an ad-
missible heuristic evaluation function h : S → < that guides
the search for the best policy. Even the discount factor γ is
represented by a simple ADD that maps every input to a
constant value. This allows us to perform all computations
of the LAO* algorithm using ADDs.

Besides exploiting state abstraction, we want to limit
computation to the set of states that are reachable from the
start state by following the best policy. Although an ADD
effectively assigns a value to every state, these values are
only relevant for the set of reachable states. To focus com-
putation on the relevant states, we introduce the notion of

masking an ADD. Given an ADD D and a set of relevant
states U , masking is performed by multiplying D by χU .
This has the effect of mapping all irrelevant states to the
value zero. We let DU denote the resulting masked ADD.
(Note that we need to have U in order to correctly interpret
DU). Mapping all irrelevant states to zero can simplify the
ADD considerably. If the set of reachable states is small, the
masked ADD often has dramatically fewer nodes. This in
turn can dramatically improve the efficiency of computation
using ADDs.

Symbolic LAO* does not maintain an explicit search
graph. It is sufficient to keep track of the set of states that
have been “expanded” so far, denoted G, the partial value
function, denoted VG, and a partial policy, denoted πG. For
any state in G, we can “query” the policy to determine its
associated action, and compute its successor states. Thus,
the graph structure is implicit in this representation. Note
that throughout the whole LAO* algorithm, we only main-
tain one value function V and one policy π. VG and πG are
implicitly defined by G and the masking operation.

Symbolic RTDP
Recall that RTDP performs a DP update while interacting
with the environment. At each time step t, the agent ob-
serves the current state st and performs a DP backup to up-
date its value, as follows:

V t+1(st)← max
a∈A

{

Ra(st) + γ
∑

s′∈S

P a(st, s
′)V t(s′)

}

.

(1)
The values of all other states are kept unchanged, that is, for
all s 6= st:

V t+1(s) = V t(s).

If the initial value function is an admissible estimate of the
optimal value function, then an agent can always take the
action that maximizes Equation (1). Otherwise some explo-
ration scheme must be used in choosing actions, in order to
ensure convergence. After an action is taken, the agent ob-
serves the resulting state and the cycle repeats.

The advantage of RTDP over standard DP is that it uses an
on-line trajectory of states, beginning from the start state, to
determine what states to update and to avoid computations
on unlikely states. However, the enumerative nature of the
trajectory sampling is a bottleneck for further performance
improvement. When the state space is large enough, a state
by state update becomes hopelessly inefficient, especially if
the sampling involves carrying out physical actions. sRTDP
helps overcome this inefficiency by generalizing the update
from a single state to an abstract state, using symbolic model
checking techniques.

We extend the idea of masking in symbolic LAO* to
sRTDP by performing DP on the abstract state E that the
current state s belongs to. Symbolic model-checking pro-
vides us with convenient and efficient techniques to group
states as abstract states and to manipulate these abstract
states. There are many ways to group states into abstract
states. We present two heuristic approaches that are moti-
vated by the idea of generalization by structural similarity. A

edelkamp
78

value-based abstract state consists of states whose value es-
timates are close to that of the current state. A reachability-
based abstract state consists of states that share with the cur-
rent state a similar set of successor states. Unlike SPUDD,
we explicitly construct this abstract state at each time step of
sRTDP, using standard ADD model-checking operators.

Generalization by Value With a value-based abstract
state, the experience is generalized to states that have sim-
ilar value estimates as the current state. The intuition is
that states with similar optimal values may also be similarly
desirable. Generalizing updates to states with similar esti-
mated values helps the agent in two ways. First, if some of
these states indeed have similar optimal value as the current
state, the update strengthens this similarity and the agent is
better informed in the future when these states are visited
again. Second, if some of the states have very different op-
timal value than the current state, the generalization helps to
distinguish them and avoid computations on them in the fu-
ture when the same state as the current state is visited again.

Generalization by Reachability With a reachability-
based abstract state, the experience is generalized to states
that are similar to the current state in terms of the set of one-
step reachable states. The intuition here is that if the agent
is going to visit some states, say C, from the current state s,
then any information about C is useful not only to s but also
to other states that can reach C. By generalizing the update
to these other states the agent is better informed in the future
whether to aim at C or to avoid it.

To compute the abstract state based on reachability, we
introduce two operators from the model-checking literature.
The Img(C) operator computes the set of one-step reach-
able states from states in C, and the PreImg(C) operator
computes the set of states that can reach some state in C in
one step. The reachability-based abstract state E can then
be computed as:

E = PreImg(Img({s}))− PreImg(S − Img({s})).

Once the set E is computed, it is used to mask the current
value function before perform the DP update. After the up-
date, an action is chosen that maximizes the DP update at
state s. The agent then carries out the action, and the pro-
cess repeats.

Although both symbolic LAO* and sRTDP use a
“masked” DP update, the masks they use are different and
serve different purposes. The mask in symbolic LAO* con-
tains all states visited so far by the forward search step.
The purpose of masking is to restrict computation to rele-
vant states. The mask in sRTDP contains states that share
structural similarity. The purpose of masking is to general-
ize update on a single state to an abstract state. This general-
ization has two consequences. It introduces some overhead
in the DP step, including identifying the abstract state, and
preforming masked DP instead of single-state DP. On the
other hand, it updates the value of a group of states in a sin-
gle step, at a cost that can be significantly less than updating
the states separately. For problems that are large enough yet
have special

Admissible heuristics
Both LAO* and (model-based) RTDP use an admissible
heuristic to guide the search. From the initial release of the
sample test problems from the planning competition, it is
possible to design domain specific heuristic functions. On
the other hand, if such a heuristic is not available, we can
always revert to a simple heuristic using approximate dy-
namic programming. Given an error bound on the approxi-
mation, the value function can be converted to an admissible
heuristic. (Another way to ensure admissibility is to perform
value iteration on an initial value function that is admissi-
ble, since each step of value iteration preserves admissibil-
ity.) Symbolic dynamic programming can be used to com-
pute an approximate value function efficiently. St. Aubin et
al. (2000) describe an approximate dynamic programming
algorithm for factored MDPs, called APRICODD, that is
based on SPUDD. It simplifies the value function ADD by
aggregating states with similar values. Another approach to
approximate dynamic programming for factored MDPs de-
scribed by Dearden and Boutilier (1997) can also be used to
compute admissible heuristics.

References
Barto, A.; Bradtke, S.; and Singh, S. 1995. Learning to
act using real-time dynamic programming. Artificial Intel-
ligence 72:81–138.
Dean, T.; Kaelbling, L.; Kirman, J.; and Nicholson, A.
1995. Planning under time constraints in stochastic do-
mains. Artificial Intelligence 76:35–74.
Dearden, R., and Boutilier, C. 1997. Abstraction and
approximate decision-theoretic planning. Artificial Intel-
ligence 89:219–283.
Feng, Z., and Hansen, E. A. 2002. Symbolic heuristic
search for factored markov decision processes. In Proceed-
ings of the Eighteenth National Conference on Artificial In-
telligence (AAAI-02).
Feng, Z.; Hansen, E. A.; and Zilberstein, S. 2003. Sym-
bolic generalization for on-line planning. In Proceedings
of the 19th Conference on Uncertainty in Articial Intelli-
gence.
Hansen, E., and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129:35–62.
Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
Proceedings of the 15th Conference on Uncertainty in Ar-
ticial Intelligence, 279–288.
St-Aubin, R.; Hoey, J.; and Boutilier, C. 2000. APRI-
CODD: Approximate policy construction using decision
diagrams. In Proceedings of NIPS-2000.

edelkamp
79

edelkamp

edelkamp

edelkamp

edelkamp
80

edelkamp
81

edelkamp
82

FCPlanner: A Planning Strategy for First-Order MDPs

Eldar Karabaev
Institute for Theoretical Computer Science

Dresden University of Technology
Dresden, Germany

karabaev@tcs.inf.tu-dresden.de

Olga Skvortsova∗
Institute for Artificial Intelligence
Dresden University of Technology

Dresden, Germany
skvortsova@inf.tu-dresden.de

Introduction
FCPLANNER (Fluent Calculus Planner) is a planning sys-
tem that is based on the first-order value iteration algorithm
(FOVIA) (Großmann, Ḧolldobler, & Skvortsova 2002) for
solving first-order MDPs. Following the idea of symbolic
dynamic programming (SDP) within the Situation Calcu-
lus by Boutilier and colleagues (Boutilier, Reiter, & Price
2001), FOVIA addresses the well-known scalability prob-
lem of the classical dynamic programming algorithms by
employing the abstraction technique, i.e., a state space is
divided into clusters, calledabstract states, and the value
functions are computed for them thereafter. The dynamics
of an MDP is formalized in the probabilistic Fluent Cal-
culus (pFC) that allows for introducing stochastic actions.
Our approach constructs a first-order representation of value
functions and policies by exploiting the logical structure of
the MDP. Thus, FOVIA can be seen as a symbolic (logical)
counterpart of classical value iteration algorithm (Bellman
1957).

Abstract States
We formalize abstract states symbolically, within the Fluent
Calculus (FC) (Ḧolldobler & Schneeberger 1990). Fluent
Calculus, much like Situation Calculus, is a logical approach
to modelling dynamically changing systems based on first-
order logic. One could indeed argue that Fluent Calculus
and Situation Calculus have very much in common. But the
latter has the following disadvantage: Knowledge of the cur-
rent state is represented indirectly via the initial conditions
and the actions which the agent has performed up to a point.
As a consequence, each time a condition is evaluated in an
agent program, the entire history of actions is involved in the
computation. This requires ever increasing computational
effort as the agent proceeds, so that this concept does not
scale up well to long-term agent control (Thielscher 2004).
Fluent Calculus overcomes the aforementioned unfolding
problem by providing the crucial concept of an explicit state
representation. The information on what is true in the cur-
rent state of the world is effortlessly extracted from the state
description without tracing back to the initial state. There-
fore we have opted for Fluent Calculus as logical formalism

∗Supported by the research training group GRK 334/3 (DFG).
Corresponding author.

underlying our automated symbolic dynamic programming
approach.

In FC, functions whose values vary from state to state
are calledfluentsand are denoted by function symbols. For
example, the fluenton(X, table) denotes the presence of a
block X on the table. Astateis a multiset of fluents rep-
resented as a term, calledfluent term, using a constant1
denoting the empty multiset and a binary function symbol
◦ denoting multiset union that is associative, commutative
and admits unit element. For example, a state in which the
block a is on the blockb andb is on the table is specified
by on(a, b) ◦ on(b, table). Constants are denoted by small
letters, variables by capital ones and substitutions byθ or σ.

Abstract statesare characterized by means of conditions
that must hold in each ground instance thereof and, thus,
they represent sets of real-world states. Informally, ab-
stract states can be specified by stating that particular fluent
terms do or do not hold. We refer to such abstract states as
CN-states, whereC stands for conjunction andN for nega-
tion, respectively.

Formally, letL be a set of fluent terms. ACN-stateis a
pair (P,N), whereP ∈ L, N ∈ 2L. Let ·M be a mapping
from fluent terms to multisets of fluents, which can be for-
mally defined as follows:1M = {̇}̇ or FM = {̇F }̇, if F is
a fluent, or(F ◦ G)M = FM ∪̇ GM , whereF,G are fluent
terms anḋ∪ is a multiset union. LetI = (∆, ·I) be an inter-
pretation, whose domain∆ is the set of all finite multisets of
ground fluents and everyCN-stateZ = (P,N) is mapped
onto

ZI = {d ∈ ∆ | ∃θ. (Pθ)M
.
⊆ d ∧

∀N ∈ N .∀σ.((Nθ)σ)M
.

* d} ,

where
.
⊆ is a submultiset relation.

In other words, theP -part of a stateZ describes prop-
erties that a real-world state should satisfy, whereasN -
part specifies the properties that are not allowed to ful-
fil. For example, theCN-stateZ = (on(X, table) ◦
red(X), {on(Y,X)}) represents all states in which there ex-
ists a red object that is on the table and clear, viz., none of
other objects covers it.

Thus, the real-world state

z =
.

{on(a, table), red(a), on(b, table), green(b)
.

}

edelkamp
83

is specified byZ. Whereas,

z′ =
.

{on(a, table), red(a), on(b, a)
.

}

is not.
Intuitively, CN-statescan be represented as first-order for-

mulae. The above-givenCN-stateZ corresponds to the fol-
lowing formula:

∃X.on(X, table) ∧ red(X) ∧ ∀Y.¬on(Y,X) .

Please note thatCN-statesshould be thought of as incom-
plete state descriptions, i.e., the properties that are not listed
in eitherP - orN -part can hold or not.

Stochastic Actions
The technique for introducing stochastic actions within the
probabilistic Fluent Calculus is to decompose a stochastic
action into deterministic primitives under nature’s control,
referred to asnature’s choices. We use a relation sym-
bol choice/2 to model nature’s choice. Consider the action
putdown(T,B) of putting a blockT down onto a blockB
from the blocksworld scenario:

choice(putdown(T,B), A) ↔
(A = putdown1(T,B) ∨A = putdown2(T,B)),

where putdown1(T,B) and putdown2(T,B) define two
nature’s choices for actionputdown(T,B). The nature’s
choiceputdown1(T,B) states the successful putting of the
block T down ontoB. Whereas,putdown2(T,B) defines
the failure execution of theputdown-action which results in
the blockT falling down on the table.

For each of nature’s choicesaj(X) associated with an
action a(X) with parametersX we define the probabil-
ity prob(aj(X), a(X), Z). It denotes the probability with
which one of nature’s choicesaj(X) is chosen in aCN-state
Z. For example,

prob(putdown1(T,B), putdown(T,B), Z) = .7

states that the probability for the successful execution of the
putdown action inZ is .7.

FOVIA is an iterative approximation algorithm for con-
structing optimal policies. The difference to classical case is
that it produces a first-order representation of optimal poli-
cies by utilizing the logical structure of MDP. The algorithm
itself can be found in (Großmann, Hölldobler, & Skvortsova
2002).

Preprocessing
In order to convert a PPDDL goal description into a goal
state space that is used as an input of our FOVIA algorithm,
we have designed a procedure for translating first-order for-
mulae into a set ofCN-states.

Since a state space is considered as a disjunction of
CN-states, we first convert a FO formula into DNF. We start
with pushing all quantifiers in front of the formula and con-
vert the quantifier-free part into DNF thereof. In order to
check whether a disjunct can be directly converted into a

CN-state, we have to examine its variables. If a disjunct con-
tains no ‘bad’ variables then it can be directly converted into
a respectiveCN-state. Otherwise, the formula itself needs
an additional treatment.

The procedure of marking variables as ‘bad’ works as
follows: If a variable occurring within a positive literal is
bounded universally then it is marked as ‘bad’. Intuitively,
based on the semantics ofCN-states, the variables that oc-
cur in theP -part of aCN-stateare considered existentially
bounded. Each ‘bad’ variable is eliminated via groundiza-
tion.

For example, in the following formula

∀X.∃Y.red(X) ∧ blue(Y)

the variableX will be marked as ‘bad’.
Assume that we have only two blocksa andb in the do-

main. After eliminatingX (and slight simplification), we
obtain:

red(a) ∧ red(b) ∧ ∃Y.blue(Y) .

The variableY will not be marked as ‘bad’, hence, it will not
be grounded. Similarly, the negative literals are checked for
‘bad’ variables. The same technique for eliminating ‘bad’
variables is applied for action descriptions.

Although our approach relies on partial groundization of
state and action descriptions, there are domains, e.g., colored
blocksworld, where most variables are marked as ‘good’,
and hence, need not be grounded.

Regression of Abstract States
The classical as well as first-order value iteration algorithms
are intimately related to regression of states. The crucial dif-
ference of the symbolic value iteration is that the regression
is performed on the abstract states instead of the single states
themselves.

Given aCN-stateZ and an action descriptionA, our re-
gression procedure produces the set of all possible predeces-
sor CN-statesZi such thatZ is reachable from each ofZi

by executingA. In FOVIA, actions are specified by precon-
ditions that are represented asCN-statesand STRIPSstyle
effectsQ+ andQ−.

We now illustrate the regression procedure with an ex-
ample from the blocksworld scenario. Here, we present one
regression step through actionputdown(Top,Bottom) that
has two nature’s choices, given below:

putdown1(Top,Bottom)
Pre: (holding(Top), {on(X, Bottom)})
Eff : Q+ = on(Top,Bottom)

Q− = holding(Top)
putdown2(Top,Bottom)

Pre: (holding(Top), {on(X, Bottom)})
Eff : Q+ = on(Top, table)

Q− = holding(Top) .

The regression of theCN-stateZ:

Z = (on(B0, B1) ◦ on(B1, table) ◦ on(B2, table), ∅)

edelkamp
84

yields the following predecessor statesZi:

Z1 = (holding(B2) ◦ on(B0, B1) ◦ on(B1, table), ∅)
Z2 = (holding(B2) ◦ on(B0, B1) ◦ on(B1, table)◦

on(B3, table), {on(B4, B3)})
Z3 = (holding(B0) ◦ on(B1, table) ◦ on(B2, table),

{on(B3, B1)}) ,

whereZ1 represents all real-world states, where a gripper
holds a blockB2, a blockB0 is onB1 andB1 is on the table;
Z2 asserts the same information asZ1 and additionally states
that some blockB3 is on the table and there is no such block
B4 that is onB3; andZ3 is interpreted as the set of all real-
world states, where a gripper holds a blockB0, blocksB1

andB2 are on the table, and there is no such blockB3 that
is onB1.

The regression procedure can be outlined as follows. We
first check whether theQ− effects and theP -part of a
CN-stateZ are consistent wrt. each other. If the answer is
no, then the regression procedure stops delivering the empty
set of predecessorCN-states. Otherwise, a predecessor state
is constructed as follows: TheQ+ effects are subtracted
from theP -part of theCN-stateZ and the result is joined
with theP -part of the action preconditions forming theP -
part of a predecessorCN-state. Analogously, theN -part of
a predecessorCN-stateis built by subtracting theQ− effects
from theN -part ofZ and joining the result with theN -part
of the action preconditions. If the resulting predecessor state
is consistent then it is added to the set of theZ ’s predecessor
states. We describe the consistency check in more detail in
the section on optimizations.

The operations over fluent terms and sets of fluent terms,
e.g., aforementioned subtraction and union, are based on
solving the submultiset matching problem that usually has
multiple solutions (Großeet al. 1992). This implies that
the regression procedure may deliver multiple predecessor
states. Recalling our running example, bothCN-statesZ1

and Z3 were obtained as a result of the regression ofZ
through a single nature’s choiceputdown1.

Some Optimizations
In general, a state description may contain two kinds of in-
consistencies. The inconsistency of the first kind takes place
when some element of theN -part contradicts with theP -
part. For example, in a state description(red(a), {red(X)})
theP -part asserts that the blocka is red, whereas theN -part
prohibits any blockX of being red. In this case, the consis-
tency test will include a simple syntactic check.

The second kind of inconsistencies is referred to as
domain-dependent. For example, the state description
(empty◦holding(a), ∅) is formally consistent (wrt. the pre-
vious kind of inconsistency). And only after having learned
that the domain contains a single gripper, thisCN-stateis
turned to be inconsistent. In this case, the consistency test
uses additional domain axioms which, e.g., state that the
combination of fluentsempty andholding(X) is forbidden.

The state space that represents a value function after some
iteration step of FOVIA algorithm may contain redundan-
cies. For example, consider a state space that consists
of two abstract statesZ1 = (holding(a), ∅) and Z2 =

(holding(X), ∅) that are both assigned the same value, say,
of 10. TheCN-stateZ1 represents the set of all real-world
states that do satisfy the factholding(a). At the same time,
the CN-stateZ2 describes all real-world states represented
by Z1 plus additional states, whereX is instantiated by a
constant different froma. Since the values associated with
Z1 and Z2 are the same,Z1 can be painlessly removed
without loss of information. In FCPLANNER, we employ
the automated normalization procedure that, given a state
space, delivers an equivalent one that contains no redundan-
cies (Skvortsova 2003). The technique employs the notion
of a subsumption relation that enables to determine which
states are redundant and can be removed from the state space
therefore.

References
Bellman, R. E. 1957.Dynamic Programming. Princeton,
NJ, USA: Princeton University Press.
Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic Dy-
namic Programming for First-Order MDPs. In Nebel, B.,
ed.,Proceedings of the Seventeenth International Confer-
ence on Artificial Intelligence (IJCAI-01), 690–700. Mor-
gan Kaufmann.
Große, G.; Ḧolldobler, S.; Schneeberger, J.; Sigmund, U.;
and Thielscher, M. 1992. Equational logic programming,
actions, and change. 177–191. MIT Press.
Großmann, A.; Ḧolldobler, S.; and Skvortsova, O. 2002.
Symbolic Dynamic Programming within the Fluent Calcu-
lus. In Ishii, N., ed.,Proceedings of the IASTED Interna-
tional Conference on Artificial and Computational Intelli-
gence, 378–383. Tokyo, Japan: ACTA Press.
Hölldobler, S., and Schneeberger, J. 1990. A new deductive
approach to planning.New Generation Computing8:225–
244.
Skvortsova, O. 2003. Towards Automated Symbolic Dy-
namic Programming. Master’s thesis, TU Dresden.
Thielscher, M. 2004. FLUX: A logic programming method
for reasoning agents.Theory and practive of Logic Pro-
gramming.

edelkamp
85

Probapop: Probabilistic Partial-Order Planning

Nilufer Onder Garrett C. Whelan Li Li
Department of Computer Science
Michigan Technological University

1400 Townsend Drive
Houghton, MI 49931

{nilufer,gcwhelan,lili}@mtu.edu

Abstract

We describe Probapop, a partial-order probabilistic
planning system. Probapop is a blind (conformant)
planner that finds plans for domains involving prob-
abilistic actions but no observability. The Probapop
implementation is based on Vhpop, a partial-order de-
terministic planner written in C++. The Probapop
algorithm uses plan graph based heuristics for select-
ing a plan from the search queue, and probabilistic
assessment heuristics for selecting a condition whose
probability can be increased.

Introduction

Probapop1 is a conformant probabilistic planner (term
used in (Hyafil & Bacchus 2003)). In this paradigm,
the actions and the initial state can be probabilistic,
i.e., they can have several possible outcomes anno-
tated by a probability of occurrence. In addition,
the planning problem is conformant i.e., the agent
cannot observe the environment. The objective is
to find a minimal sequence of steps that will take
an agent from an initial set of states to a speci-
fied goal state within a specified threshold probabil-
ity. Note that while the assumption of blind agents
is not true in general, it is useful to incorporate con-
formant planning methods because sensing might be
expensive, not reliable, or not available. We leave con-
tingency planning, e.g., (Majercik & Littman 1999;
Onder & Pollack 1999; Hansen & Feng 2000; Karls-
son 2001) and other paradigms that assume non-
probabilistic effects, e.g.,(Ferraris & Giunchiglia 2000;
Bertoli, Cimatti, & Roveri 2001) outside the current
implementation of Probapop.
Our work is motivated by the incentive to have

partial-order planning as a viable option for confor-
mant probabilistic planning. The primary reason is
that partial-order planners have worked very well with
lifted actions which are useful in coding large domains

1This work has been supported by a Research Excellence
Fund grant from Michigan Technological University.

in a compact way. Second, due to its least commit-
ment strategy in step ordering, partial-order planning
(POP) produces plans that are highly parallelizable.
Third, planners that can handle rich temporal con-
straints have been based on POP algorithms (Smith,
Frank, & Jonsson 2000).
Our basic approach is to form base plans by using de-

terministic partial-order planning techniques, and then
to estimate the best way to improve these plans. Re-
cently Repop (Nguyen & Kambhampati 2001) and Vh-
pop (Younes & Simmons 2002) planners have demon-
strated that the very heuristics that speed up non-
partial-order planners can be used to scale up partial-
order planning. We show that these distance based
heuristics (McDermott 1999; Bonet & Geffner 1999) as
implemented using “relaxed” plan graphs can be em-
ployed in probabilistic domains. These, coupled with
selective plan improvement heuristics result in signif-
icant improvement. As a result, Probapop enjoys the
soundness, completeness, and least-commitment prop-
erties of partial-order planning and makes partial-order
planning feasible in probabilistic domains.

Probapop and Partial-Order Planning

For partial-order probabilistic planning, we imple-
mented the Buridan (Kushmerick, Hanks, & Weld
1995) probabilistic planning algorithm on top of Vhpop
(Younes & Simmons 2002), a recent partial-order plan-
ner. A partially ordered plan π is a is 6-tuple, <STEPS,

ORD, BIND, LINKS, OPEN, UNSAFE>, representing sets
of ground actions, ordering constraints, binding con-
straints, causal links, open conditions, and unsafe
links, respectively. An ordering constraint Si ≺ Sj

represents the fact that step Si precedes Sj . A causal

link is a triple < Si, p, Sj >, where Si is the pro-

ducer, Sj is the consumer and p represents the condi-
tion supported. An open condition is a pair < p, S >,
where, p is a condition needed by step S. A causal link
< Si, p, Sj > is unsafe if the plan contains a threaten-
ing step Sk such that Sk has p among its effects, and

edelkamp
86

Sk may intervene between Si and Sj . Open conditions
and unsafe links are collectively referred to as flaws. A
planning problem is a triple (I,G, t), where, the initial
state I is a probability distribution over states, G is a
set of literals that must be true at the end of execution,
and t is a probability threshold. The planner must find
a plan that takes the agent from I to G with a prob-
ability ≥ t. If several plans have the same probability
of success, then the one with the least number of steps
is preferred.
The Probapop algorithm shown in Fig. 1 first con-

structs an initial plan by forming I and G into ini-
tial and goal steps, and then refines the plans in the
search queue until it finds a solution plan that meets
or exceeds the probability threshold. Plan refinement
operations involve repairing flaws. An open condition
can be closed by adding a new step from the domain
theory, or reusing a step already in the plan. An un-
safe link is handled by the promotion, demotion, or
separation (lifted actions are used) operations, or by
confrontation(Penberthy & Weld 1992) which involves
commitment to non-threatening effects.

function Probapop (initial, goal, t)
returns a solution plan, or failure
** plans ← Make-Minimal-Plan(initial, goal)
** loop do
**** if plans is empty then return failure
**** plan ← Remove-Front(plans)
**** if Solution?(plan, t) then return plan
**** plans ← Merge(plans, Refine-Plan(plan))
** end

function REFINE-PLAN (plan)
returns a set of plans (possibly null)
** if Flaws(plan) is empty then
**** plan ← Reopen-Conditions(plan)
** flaw ← Select-Flaw(plan)
** if flaw is an open condition then choose:
****** return Reuse-Step(plan, flaw)
****** return Add-New-Step(plan, flaw)
** if flaw is a threat then choose:
****** return Demotion(plan, flaw)
****** return Promotion(plan, flaw)
****** return Separation(plan, flaw)
****** return Confrontation(plan, flaw)

Figure 1: The probabilistic POP algorithm.

The search is conducted using an A* algorithm
guided by a ranking function f . As usual for a plan
π, f(π) = g(π) + h(π), where g(π) is the cost of the
plan, and h(π) is the estimated cost of completing it.
In Probapop, g reflects the number of steps in a plan, h
represents the estimated number of steps to complete
a plan. Both are weighted by the probability of success
of the overall plan. The ranking function is used at the

Merge step to order the plans in the search queue such
that the plan that ranks best is at the beginning of the
queue. We term a plan for which OPEN = UNSAFE = ∅
as a quasi-complete plan. A quasi-complete plan is not
a solution if it does not meet the probability thresh-
old. Probapop can be viewed as first choosing a plan
to improve using the ranking function, then choosing
a way to improve the plan, and finally choosing a way
to implement the improvement. These phases do not
have to follow strictly or work on the same plan. Af-
ter the successors of a plan are generated, the ranking
function might gear the search toward other plans in
the search queue. In the next section, we describe the
heuristics used.

Distance Based Ranking and Selective

Reopening in Probapop

The Vhpop deterministic partial order-planner de-
scribed in (Younes & Simmons 2002) implements the
ADD heuristic to provide an estimate of the total num-
ber of new actions needed to close all the open condi-
tions. Before starting to search, the planner builds a
planning graph (Blum & Furst 1997) which has the
literals in the initial state in its first level, and con-
tinues to expand it until it reaches a level where all
the goal literals are present. Vhpop’s ADD heuris-
tic achieves good performance by computing the step
cost of the open conditions from the planning graph,
i.e., h(π) = hadd(OPEN(π)). The cost of achieving
a literal q is the level of the first action that achieves
q: hadd(q) = mina∈GA(q)hadd(a) if GA(q) 6= ∅, where
GA(q) is an action that has an effect q. Note that
hadd(q) is 0 if q holds initially, and is∞ if q never holds.
The level of an action is the first level its preconditions
become true: hadd(a) = 1 + hadd(PREC(a)).

a

prec: P, Qprec: P, Q

c

bQ ~Q

0.7 0.3
c

a b

P ~P

prec: P, ~Q

A1

A1−1 A1−2

A1−3

Figure 2: Probabilistic action A1 is split into deter-
ministic actions A1-1, A1-2, and A1-3.

In order to be able to use ADD with probabilistic ef-
fects, one would need to split into as many plan graphs
as there are leaves in a probabilistic action. To avoid
this, we split each action in the domain theory into as
many deterministic actions as the number of nonempty
effect lists each representing a possible way the original

edelkamp
87

action would work (Fig. 2). By using the split actions,
we can compute a good estimate of the number of ac-
tions needed to complete a plan. While the plan graph
uses split actions, the plans in the search queue always
contain the full original action so that the planner can
correctly assess the probability of success. Our current
ranking function uses this assessment to prefer plans
with higher probability of success, and if there is a tie,
the plan with less number of steps is preferred.

An important distinction between deterministic
partial-order planning and probabilistic partial-order
planning is multiple support for plan literals. In the
deterministic case, an open condition is permanently
removed from the list of flaws once it is resolved. In
the probabilistic case, it can be reopened so that the
planner can search for additional steps that increase
the probability of the literal. We address this problem
by employing selective reopening (SR) where we select
a random total ordering of the plan; look at the state
distribution after the execution of each step; and re-
open only those conditions that are not guaranteed to
be achieved. While plan assessment is costly for prob-
abilistic plans, this is a one time cost incurred only on
quasi-complete plans and we have observed that the
benefit of avoiding extra plans in the search space far
exceeds the computational overhead incurred.

It is important to note that neither the split actions
nor the selective reopening technique change the base
soundness and completeness properties of the Buridan
algorithm. The split actions are only used in the re-
laxed plan graph, and the reopening technique does
not block any alternatives from being sought as they
would already be covered by a plan in the search queue.

Conclusion and Future Work

We presented Probapop, a partial-order probabilistic
planner. We described distance-based and probabilis-
tic condition based heuristics for partial-order prob-
abilistic planning. We informally noted that neither
the split actions nor the selective reopening technique
change the base soundness and completeness proper-
ties of the Buridan algorithm.

Probapop is different than policy generating plan-
ners such as Spudd(Hoey et al. 1999) and Gpt(Bonet
& Geffner 2000) in the sense that it generates plans.
Given a planning problem, Probapop returns a se-
quence of steps that achieve the goal with a probability
that meets or exceeds the specified threshold. The plan
generated does not rely on sensing actions in order to
be executed. Our future work involves adding the ca-
pability to deal with partially observable domains to
Probapop.

References
Bertoli, P.; Cimatti, A.; and Roveri, M. 2001. Heuristic
search + symbolic model checking = efficient conformant
planning. In Proc. 18th Intl. Joint Conf. on Artificial
Intelligence, 467–472.

Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis. AIJ 90:281–300.

Bonet, B., and Geffner, H. 1999. Planning as heuris-
tic search: New results. In Proc. 5th European Conf. on
Planning (ECP’99).

Bonet, B., and Geffner, H. 2000. Planning with incom-
plete information as heuristic search in belief space. In
Proc. 5th Intl. Conf. AI Planning & Scheduling, 52–61.

Ferraris, P., and Giunchiglia, E. 2000. Planning as satis-
fiability in nondeterministic domains. In Proc. 17th Nat.
Conf. Artificial Intelligence, 748–754.

Hansen, E. A., and Feng, Z. 2000. Dynamic programming
for POMDPs using a factored state representation. In
Proc. 5th Intl. Conf. AI Planning & Scheduling, 130–139.

Hoey, J.; St-Aubin, R.; Hu, A.; and Boutilier, C. 1999.
SPUDD: Stochastic planning using decision diagrams. In
Proc. 15th Conf. Uncertainty in AI.

Hyafil, N., and Bacchus, F. 2003. Conformant probabilis-
tic planning via csps. In Proc. 13th Intl. Conf. Automated
Planning & Scheduling.

Karlsson, L. 2001. Conditional progressive planning under
uncertainty. In Proc. 18th Intl. Joint Conf. on Artificial
Intelligence, 431–436.

Kushmerick, N.; Hanks, S.; and Weld, D. S. 1995. An
algorithm for probabilistic planning. AIJ 76:239–286.

Majercik, S. M., and Littman, M. L. 1999. Contingent
planning under uncertainty via stochastic satisfiability. In
Proc. 16th Nat. Conf. Artificial Intelligence, 549–556.

McDermott, D. 1999. Using regression-match graphs to
control search in planning. AIJ 109(1-2):111–159.

Nguyen, X., and Kambhampati, S. 2001. Reviving par-
tial order planning. In Proc. 18th Intl. Joint Conf. on
Artificial Intelligence, 459–464.

Onder, N., and Pollack, M. E. 1999. Conditional, prob-
abilistic planning: A unifying algorithm and effective
search control mechanisms. In Proc. 16th Nat. Conf. Ar-
tificial Intelligence, 577–584.

Penberthy, J. S., and Weld, D. S. 1992. UCPOP: A
sound, complete, partial order planner for ADL. In Proc.
Third Intl. Conf. Principles of Knowledge Representation
& Reasoning, 103–114.

Smith, D. E.; Frank, J.; and Jonsson, A. K. 2000. Bridg-
ing the gap between planning and scheduling. Knowledge
Engineering Review 15(1).

Younes, H. L., and Simmons, R. G. 2002. On the role of
ground actions in refinement planning. In Proc. 6th Intl.
Conf. AI Planning & Scheduling, 54–61.

edelkamp
88

Probabilistic Reachability Analysis for Structured Markov Decision Processes

Florent Teichteil-Königsbuch and Patrick Fabiani
ONERA-DCSD 2 Avenue Édouard-Belin

31055 Toulouse, France
(florent.teichteil,patrick.fabiani)@cert.fr

Abstract

We present a stochastic planner based on Markov De-
cision Processes (MDPs) that participates to the prob-
ablistic planning track of the 2004 International Plan-
ning Competition. The planner transforms the PDDL
problems into factored MDPs that are then solved with
a structured policy iteration algorithm. A probabilistic
reachability analysis is performed, approximating the
MDP solution over the reachable states subspace, in or-
der to restrict the search space and allow a subsequent
heuristic search.

Introduction
We present a planner based on Markov Decision Processes
(MDPs) (Puterman 1994) to participate in the probabilistic
planning track of the International Planning Competition at
ICAPS’04. MDPs provide a decision-theoretic framework
for planning with uncertain actions effects. A MDP (Put-
erman 1994) is a Markov chain controlled by an agent. A
control strategy associates to each state the choice of an ac-
tion, whose result is a stochastic state. The Markov property
means that the probability of arriving in a particular state af-
ter an action only depends on the previous state of the chain
and not on the entire states history. Formally it is a tuple
〈S, A, T,R〉 where S is the set of states, A is the set of ac-
tions, T and R are functions giving respectively the transi-
tion probabilities between states (depending on the chosen
action) and the immediate or terminal rewards (depending
on the starting state, the chosen action and the ending state).
The most frequent optimisation criterion consists in maxi-
mizing the infinite horizon sum E (

∑∞
t=0 β rt) of expected

rewards rt discounted by a factor 0 < β < 1 that insures the
convergence of algorithms, but can also be interpreted as a
uncontrolled stopping probability between two time points.

The resolution of MDPs is based on dynamic program-
ming and includes two classes of algorithms : value iter-
ation and policy iteration. The first is an iteration on the
value function associated with each state, that is to say the
expected accumulated reward starting from this state. When
the iterated value function stabilizes, the optimal value func-
tion is reached and the optimal policy follows. In the policy

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

iteration scheme, the current policy is assessed on the in-
finite horizon and improved locally at each iteration. The
value of a policy π is solution of Bellman’s equations (Bell-
man 1957) :

V π(s) =
∑
s′∈S

T (s, π(s), s′) · (R(s, π(s), s′) + β V π(s′))

Compared to value iteration, the policy iteration algorithm
converges in fewer iterations, but each policy assessment
stage may be computationally costly. A large discussion
about criteria and resolution algorithms is proposed in (Put-
erman 1994).

Motivations and issues
Nevertheless, classical exact algorithms (based on stochas-
tic dynamic programming on an explicitly enumerated state
space) are not effective enough for realistic applications that
often have very large state spaces (Boutilier & Hanks 1999;
Verfaillie, Garcia, & Péret 2003). Proposed techniques
to solve such problems include approximating or learn-
ing methods (Bertsekas & Tsitsiklis 1995) where the com-
puting cost and the error are both controlled. Other ap-
proaches exploit the natural structure of planning problems
either by using compact factored representations (Boutilier
& Hanks 1999; Boutilier, Dearden, & Goldszmidt 2000;
Hoey et al. 2000), or by decomposing the state space in
sub-regions (Hauskrecht et al. 1998; Dean & Lin 1995;
Parr 1998) that enables a hierarchical resolution that is
sometimes more effective.

Our initial motivations are to combine factored and
enumerated state representations in probabilistic planning
(Teichteil-Knigsbuch & Fabiani 2004). The obtained hybrid
MDP model exploits the problem structure in terms of both
decomposition and factorization. This approach is adapted
for stochastic planning problems involving both intermedi-
ate tasks planning and navigation planning. Tools are needed
in order to restrict the search space to its useful part and al-
low an efficient heuristic search in useful regions.

State space factorization
Our planner uses a compact factored representation of
MDPs based on Algebraic Decision Diagrams (ADDs) (R.I.
Bahar et al. 1993) and is inspired from (Hoey et al. 2000).

edelkamp
89

Since the problems of the stochastic planning track of the
competition are given in the PPDDL 1.0 language (Younes
& Littman 2003), we must translate the PPDDL problem
definitions into ADDs-based MDP representation.

The factorization of the state space consist in a cross prod-
uct involving state variables : S = ⊗n

i=1xi. It is a compact
representation because the states are no longer enumerated
in a list, but rather structured by the set of random state vari-
ables: xi

n
i=1. Such variables enable to process sets of states,

instead of individual states, whenever useful. For each ac-
tion, the transition probability into a given state is no longer
given as a function of the individual initial state but now de-
pends conditionnally on the state variables. Therefore, they
can be represented either as Dynamic Bayesian Networks
(Dean & Kanazawa 1989) or with probabilistic STRIPS op-
erators (Dearden & Boutilier 1997).

Dynamic Bayesian Networks (DBNs)
A factored MDP can be represented by use of a set of ac-
tion networks. For each action, an action network (which is
a DBN) represents the probabilistic effects and rewards ob-
tained on the variables after the action has been performed
(post-action variables), conditionally to the possible val-
ues of the variables before the action is applied (pre-action
variables). There can exist diachronic arcs, directed from
pre-action variables to post-action variables, and synchronic
arcs encoding for dependences (correlations) between post-
action variables. Such DBNs represent the factored con-
ditional (controlled) transition probabilities within the state
space, encoded as conditional probabilities of obtaining the
post-action variables knowing the pre-action variables. The
corresponding immediate rewards are directly associated to
the possible transitions. These data are stored respectively in
a Conditional Probability Table and in a Conditional Reward
Table. Such data structures can be represented either as a set
of decision trees (Boutilier, Dearden, & Goldszmidt 2000)
or as a set of Algebraic Decision Diagrams (ADDs) (Hoey
et al. 2000). Although ADDs only deal with binary vari-
ables (boolean values), they are in most cases much more
effective than decision trees. Non-binary variables are then
encoded using a number of boolean variables (Hoey et al.
2000).

Resolution scheme
The resolution scheme corresponding to factored MDPs,
named Decision-Theoretic Regression, avoid the explicit
enumeration of all states at each iteration. The correspond-
ing algorithms are structured versions of the classical MDPs
resolution algorithms, which use algebraic operations de-
fined on decision trees, or ADDs, in order to solve Bell-
man’s equations for these data structures. For instance, us-
ing ADDs, the conditional probabilities ADDs of the possi-
ble actions (Probability ADDs) and conditional reward val-
ues ADDs of the possible actions (Reward ADDs) are com-
bined in order to provide both Value Function ADDs and
Policy ADDs on the factored state space. The algorithms
directly perform the operations on ADDs (the same on de-
cision trees naturally). The SPI algorithm (Boutilier, Dear-
den, & Goldszmidt 2000) is a value iteration scheme based

on decision trees. The SPUDD and APRICODD algorithms
(Hoey et al. 2000), based on ADDs, are respectively value
iteration and approximated value interation algorithms for
factored MDPs. As SPUDD, we use the CUDD package
(Somenzi 1998) as an ADD library in our planner.

Policy iteration with ADDs
However, our planner rather implements a structured ver-
sion of the modified policy iteration. As a matter of fact,
we did not find any implementation of the policy iteration
scheme based on the CUDD package. To our experience,
the CUDD package does not provide directly a number of
operations that appear as useful for policy iteration. For in-
stance, policy evaluation requires an operation on the cur-
rent Policy ADD Π, which replaces each leaf labelled by the
number of an action a (Policy ADDs have leaves labelled by
action numbers) with the Reward ADD Ra of this action a,
and replaces the other leaves by 0. Let us call ConcatAc-
tionRewardADDPolicy(Π,a) such an operation that outputs
an ADD RΠ

a having the same leaves values as Ra when ap-
plicable according to Π, 0 otherwise. RΠ =a∈A RΠ

a is the
immediate reward ADD applying Π over the state space.
Rπ ←− 0
For a from 1 to |A| do

RΠ
a ←− ConcatActionRewardADDPolicy(Π, a)

Rπ ←− RΠ + RΠ
a

Similarly, we need a ConcatActionProbADDPolicy(Π,a) to
compute the probability ADDs PΠ

a that applies the Probabil-
ity ADD Pa of action a whenever applicable according to Π,
and 0 otherwise. PΠ =a∈A PΠ

a is the transition Probability
ADD over the state space S applying Π. The implemented
version of these operations could possibly be improved by
writing new low-level procedures for the CUDD package.

Correlations
The resolution of factored MDPs can sometimes be specif-
ically improved, depending on the specific features of the
problem. For instance, dealing with correlations between
post-action variables in action networks (synchronic arcs)
may be an issue. In (Boutilier, Dearden, & Goldszmidt
2000), it is proposed to replace such parasitic post-action
variables in decision trees (or ADDs) by modified subtrees
containing only pre-action variables. However, this complex
operation can be avoided. This is done in our planner by
using a single complete action diagram per action network
(Hoey et al. 2000) that represents the product of the con-
ditional probabilities of obtaining the post-action variables
knowing the pre-action variables; as a matter of fact, the
correlations in that case are implicit and they do not require
a specific treatment.

Probabilistic Reachability Analysis and Heuristic
Search
Coping with large state spaces is a really challenging is-
sue when dealing with realistic problems. This problem has
been addressed from at least two different points of view in
the literature :

edelkamp
90

• Reachability analysis : when the initial state is known,
a reachability analysis allows to dismiss state variables
combinations (sets of states) corresponding to states that
will never be reached or traversed. For example, the algo-
rithm REACHABLEK proposed in (Boutilier, Brafman, &
Geib 1998) enables to push away from trees (or ADDs in
the same way) the nodes corresponding to states that are
not reachable when starting from a given starting state.

• heuristic search : an heuristic search algorithm can be
used in order to speed up the optimization algorithms, ei-
ther by producing good initialization values for iterative
optimization, or by leading the optimization algorithm to
run on more useful regions of the state space. For ex-
ample, the algorithm proposed in (Feng & Hansen 2001)
does both and guarantees to converge towards the opti-
mal solution by using an admissible heuristic. It performs
value iteration on a restriction E of the state space. It uses
a lower bound estimation as a heuristic initial value as-
signed on the “fringe” states on the border of E for value
iteration on the states of E. This heuristic also determines
the “explansion” of E via a reachability analysis using the
current “partial” policy Π given by policy iteration at this
stage.

The meeting point of both points of view is reached when
the heuristic search is based on a reachability analysis. In
our planner we perform a probabilistic reachability analysis
on the problem. We use it in the policy iteration scheme in
order to provide an initial partial policy. We also use it to
restrict the resolution algorithm on a useful subspace of the
state space. These aspects of the resolution schemeare still
under development and require further work.

Conclusion
We have presented our probabilistic planner which is
based on Factored Markov Decision Processes (MDPs) as
a decision-theoretic framework for planning under uncer-
tainty. The work described in this short paper is still un-
complete at this time, but will be completed for the prob-
abilistic planning track of the International Planning Com-
petition at ICAPS’04. We expect the competition to lead
to improvements of our algorithms, to be used later in a
more general framework combining factored and enumer-
ated state representations. Such an hybrid MDP model al-
lows to take advantage of the problem structure in terms of
both (geographical) decomposition and factorization. It is
more dedicated to stochastic planning problems involving
both intermediate tasks planning and navigation planning,
such as exploration missions. This research is part of the
autonomous helicopter project ReSSAC project at ONERA
(http://www.cert.fr/dcsd/RESSAC).

References
Bellman, R. 1957. Dynamic Programming. Princeton, NJ:
Princeton University Press.
Bertsekas, D. P., and Tsitsiklis, J. N. 1995. Neuro-dynamic
programming: an overview. In Proceedings of the 34th
Conference on Decision and Control, 560–564.

Boutilier, C., and Hanks, T. D. S. 1999. Decision-theoretic
planning: Structural assumptions and computational lever-
age. J. of Artificial Intelligence Research 11:1–94.
Boutilier, C.; Brafman, R. I.; and Geib, C. 1998. Struc-
tured reachability analysis for Markov decision processes.
In Uncertainty in Artificial Intelligence, 24–32.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 2000.
Stochastic dynamic programming with factored represen-
tations. Artificial Intelligence 121(1-2):49–107.
Dean, T., and Kanazawa, K. 1989. A model for reason-
ing about persistence and causation. Computational Intel-
ligence 5(3):142–150.
Dean, T., and Lin, S.-H. 1995. Decomposition techniques
for planning in stochastic domains. In Proceedings of the
14th IJCAI 1995, 1121–1129.
Dearden, R., and Boutilier, C. 1997. Abstraction and
approximate decision-theoretic planning. Artificial Intel-
ligence 89:219–283.
Feng, Z., and Hansen, E. 2001. Symbolic heuristic search
for factored markov decision processes. In Proceedings
of the Eighteenth National Conference on Artificial Intel-
ligence, 455–460. Edmonton, Canada: AAAI Press / The
MIT Press.
Hauskrecht, M.; Meuleau, N.; Kaelbling, L. P.; Dean, T. L.;
and Boutilier, C. 1998. Hierarchical solution of markov
decision processes using macro-actions. In Proceedings of
14th Conf. UAI 1998, 220–229.
Hoey, J.; St.Aubin, R.; Hu, A.; and Boutilier, C. 2000.
Optimal and approximate stochastic planning using deci-
sion diagrams. Technical Report TR-2000-05, University
of British Columbia.
Parr, R. 1998. Flexible decomposition algorithms for
weakly coupled markov decision problems. In Proceed-
ings of 14th Conf. UAI 1998, 422–430.
Puterman, M. L. 1994. Markov Decision Processes. John
Wiley & Sons, INC.
R.I. Bahar; E.A. Frohm; C.M. Gaona; G.D. Hachtel; E.
Macii; A. Pardo; and F. Somenzi. 1993. Algebraic De-
cision Diagrams and Their Applications. In IEEE /ACM
International Conference on CAD, 188–191. Santa Clara,
California: IEEE Computer Society Press.
Somenzi, F. 1998. Cudd: Cu decision diagram package.
Technical report, University of Colorado at Boulder.
Teichteil-Knigsbuch, F., and Fabiani, P. 2004. Un mo-
dle hybride en planification probabiliste d’exploration au-
tonome. In Proceedings RFIA’04.
Verfaillie, G.; Garcia, F.; and Péret, L. 2003. Deployment
and Maintenance of a Constellation of Satellites: a Bench-
mark. In Proceedings of ICAPS’03 Workshop on Planning
under Uncertainty and Incomplete Information.
Younes, H. L., and Littman, M. L. 2003. Ppddl 1.0: An ex-
tension to pddl for expressing planning domains with prob-
abilistic effects.

edelkamp
91

Learning Reactive Policies for Probabilistic Planning Domains

SungWook Yoon and Alan Fern and Robert Givan
Electrical and Computer Engineering, Purdue University, West Lafayette IN 47907 USA

{sy, afern, givan}@purdue.edu

Abstract

We present a planning system for selecting policies in prob-
abilistic planning domains. Our system is based on a vari-
ant of approximate policy iteration that combines inductive
machine learning and simulation to perform policy improve-
ment. Given a planning domain, the system iteratively im-
proves the best policy found so far until no more improvement
is observed or a time limit is exceeded. Though this process
can be computationally intensive, the result is a reactive pol-
icy, which can then be used to quickly solve future problem
instances from the planning domain. In this way, the resulting
policy can be viewed as a domain-specific reactive planner for
the planning domain, though it is discovered with a domain-
independent technique. Thus, the initial cost of finding the
policy is amortized over future problem-solving experience
in the domain. Due to the system’s inductive nature, there are
no performance guarantees for the selected policies. How-
ever, empirically our system has shown state-of-the-art per-
formance in a number of benchmark planning domains, both
deterministic and stochastic.

Introduction
We view a planning domain (e.g. as specified via PPDDL)
as a Markov Decision Process (MDP) where there is an
MDP state for each possible problem instance in the do-
main. Viewed as such, a solution to the MDP, i.e. a policy,
is a mapping from problem instances to domain actions. For
goal-based domains, such a policy can be viewed as speci-
fying what action to take given the current domain state and
current goal. A good policy will select actions so as to min-
imize the expected cost of reaching the goal.

Typically the MDP corresponding to a PPDDL domain
has far too many states to support solution via flat state-
space MDP techniques. To deal with large state spaces
we base our system on a form of approximate policy itera-
tion (API), which does not rely on state-space enumeration.
Most existing frameworks for API (e.g. (Bertsekas & Tsit-
siklis 1996)) represent policies indirectly via value functions
and use machine learning to select value function approxi-
mations. However, in many domains, particularly those with
relational (first-order) structure, representing and learning

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

value functions is much more complicated than represent-
ing and learning policies directly. Based on this observation,
our system utilizes a new variant of API (Fern, Yoon, & Gi-
van 2003), which represents policies directly as state/action
mappings.

The performance of our system depends on two critical
issues. First, we must provide a policy language and asso-
ciated learner that allow the system to find approximations
of good policies. Second, for complex domains, it is neces-
sary to provide a mechanism to bootstrap the API process.
Below we describe the choices we have made to deal with
these issues in our current system.

In what follows we first provide an overview of API. Next
we discuss the policy representation language and learning
technique used in our system. Finally, we give an overview
of our bootstrapping technique. A more detailed treatment
of our algorithms can be found in (Fern, Yoon, & Givan
2003; 2004).

Approximate Policy Iteration
Figure 1 shows the core components of our system’s API en-
gine. Each iteration of API consists of two primary stages:
policy evaluation and policy selection. Intuitively, policy
evaluation uses simulation to produce a training set that de-
scribes an improved policy with respect to the current pol-
icy. Policy selection then uses machine learning to find an
approximation of the improved policy based on the training
set. Thus, if we are given a current policy and then apply
these steps in sequence, the result is an (approximately) im-
proved policy. Our system iterates these steps until no more
improvement is observed.

Policy Evaluation. Policy evaluation is carried out via
the simulation technique of policy rollout (Bertsekas & Tsit-
siklis 1996). The policy-rollout component first draws a set
of problem instances (which can also be viewed as MDP
states) from the provided problem generator.1 Next, for each
problem instance I and each action a available in I , simula-
tion is used to estimate the Q-value Q(I, a, π) of the current

1Even when a problem generator is not provided for a planning
domain, we can still use API to solve individual problem instances.
Given an individual problem instance to be solved, we simply cre-
ate a trivial problem generator that always returns that problem in-
stance.

edelkamp

edelkamp
92

edelkamp

Problem
Generator

Policy
Rollout

Problem
Instances

Training
Data

Current Best Policy

Classifier
Learning

Figure 1: Block diagram of approximation policy iteration. We assume each planning domain provides a problem generator and our goal
is to produce a policy that performs well on problem instances drawn from the generator. Given the current best policy, the policy-rollout
component creates a training set that describes an improved policy as evaluated on problems drawn from the generator. The classifier learner
than analyzes this training set and outputs an approximately improved policy.

policy π, which is simply the expected value of taking ac-
tion a in I and then following π until a terminating state is
reached or a horizon limit is exceeded.

It is straightforward to compute a new improved pol-
icy π′ from the Q-values of policy π. In particular, it
is a basic property of MDPs that π′ defined as π′(I) =
argmax

a
Q(I, a, π) is guaranteed to improve upon π, if im-

provement is possible. Thus, for each of our sample prob-
lem instances, the estimates of Q(I, a, π) can be used to
calculate π′(I), that is an “improved action” for problem
instance I . Intuitively, the pairs 〈I, π′(I)〉 can be viewed
as training examples for learning an approximation of π′.
To support such learning, the output of the policy-rollout
component is a training set, with one training instance
〈I, Q(I, a1, π), . . . , Q(I, an, π)〉 for each instance I drawn
from the problem generator. Please refer to (Fern, Yoon, &
Givan 2003) for more details.

Policy Selection. Policy selection is carried out by the
classifier-learning component of our system. Note that a pol-
icy can be viewed as a classifier that maps problem instances
(i.e. states) to actions. The training set obtained from policy
rollout is used to learn an (approximately) improved policy.
Given a language for compactly representing policies, the
job of the classifier learner is to select a policy within that
language that chooses actions with high Q-value for prob-
lem instances in the training set. With a proper language
bias, such policies also tend to select good actions in prob-
lem instances outside of the training set. In the next section
we give an overview of the policy description language and
the corresponding learner used in our system.

Compute Time. In our current system, the compuatation
time of API is mostly consumed by generating training sets
via policy rollout. This is particularly the case for domains
where problem instances contain many ground actions, as
multiple trajectories must be simulated for each ground ac-
tion in each problem instance encountered. Presently the
rollout component is implemented in Scheme, hence one
way to significantly improve runtime is to provide a C imple-
mentation. We are also working to exploit the independence
of the rollout trajectories with a parallel implementation. If
completed, this speedup may be in effect for our competition
entry.

Representing and Learning Policies
For API to succeed, we must provide an adequate language
for representing good policies in a domain, and an associated
learner that can find good policies, in that language, based
on the guidance provided by the rollout training sets.

One of our primary interests is in applying our system to
relationally structured planning domains, such as the blocks
world, where problem instances are described by specify-
ing a domain of objects (e.g. a set of blocks) and relations
among the objects. Thus, it is critical that we provide a pol-
icy language that leverages the relational structure in order
to generalize across problem instances with different sets of
objects. For example, our language needs to represent poli-
cies that can be applied to any problem instance of the blocks
worlds, regardless of the number and identity of blocks. In
order to represent such “generalized policies” we draw upon
ideas from the knowledge-representation community, using
a language based on taxonomic syntax.

Policy Representation. Our policy representation is an
ordered list of rules. The head of each rule is a variablized
action type such as pickup(?a). The body of each rule spec-
ifies a conjunction of constraints on the “object variables”
in the head, which indicate when an action should be ap-
plied. Given a problem instance, we say that a rule suggests
an action if: 1) the action is the result of replacing the object
variables in the head with objects from the problem instance,
and 2) those objects satisfy the appropriate constraints in the
body. The action selected by an ordered list of rules (i.e. a
policy) is equal to the action chosen by the earliest rule that
selects an action.

The object constraints in a rule’s body are represented via
taxonomic syntax expressions, which are constructed from
the predicate symbols of the planning domain and object
variables in the rule’s head. As an example policy, consider
a blocks-world domain where the goal is always to clear off
block A. We can represent an optimal policy in our taxo-
nomic representation as follows.

pickup(?a) : (?a ∈ on∗ A) ∧ (?a ∈ clear)

putdown(?a) : ?a ∈ holding

The first rule indicates that we should “pick up a clear block
which is above block A”. The second rule says that we
should “put down any block that is being held”.

For a detailed description of the syntax and semantics of

edelkamp
93

our policy language please refer to the appendix of (Fern,
Yoon, & Givan 2004).

Learning. Recall that each training instance is of the form
〈I, Q(I, a1, π), . . . , Q(I, an, π)〉, where I is a problem in-
stance and the Q(I, ai, π) are the associated Q-values. The
goal of the learner is to select a list of rules such that the
actions chosen by the corresponding policy results in high
Q-value over the training data. Ideally the learned policy
should always select an action corresponding to the largest
Q-value.

We use a simple greedy covering strategy for learning lists
of taxonomic rules. We add one rule to the list at a time
until the resulting policy covers all of the training data (i.e.
the policy selects an action for every problem instance in the
training data). Each rule is learned by greedily adding object
constraints to the body according to a heuristic measure that
attempts to balance the coverage and quality of a rule. For
more information on the learner, please refer to (Yoon, Fern,
& Givan 2002) and (Fern, Yoon, & Givan 2003).

Bootstrapping from Random Walks
API must be initialized with a base policy from which it-
erative policy improvement begins. Since our objective is
to have a domain-independent system, we use the random
policy as the default base policy in our system. However,
for many planning domains it is unlikely that a random pol-
icy will achieve any non-trivial reward in problem instances
drawn from the provided problem generator. For example,
in a blocks world with even a relatively small number of
blocks, it is unlikely that a random policy will achieve the
goal configuration. As a result, in such domains, API will
tend to fail when initialized with a random base policy. The
primary reason for the failure is that the Q-values for each
action under the random policy will tend to be equal. Thus,
the rollout training set, which is based on the Q-values, will
not provide the learner with useful guidance as to what ac-
tions are desirable.

Our current approach to this problem is to utilize a
new bootstrapping technique (Fern, Yoon, & Givan 2004).
Rather than initially drive API with the original problem
generator (which generates difficult problems), we instead
automatically construct an new problem generator that gen-
erates easier problems. We then increase the problem diffi-
culty in accordance with the quality of the current best policy
found by API. Below we describe this process for goal-based
domains. Our current system does not provide a bootstrap-
ping mechanism for non-goal-based domains.

We generate problem instances of varying difficulty by
performing random walks in the planning domain. To con-
struct a single problem instance from a planning domain, we
first draw a problem instance from the original problem gen-
erator. In a goal-based setting, such a problem instances will
specify an (initial) domain state s and a goal. Next, starting
at s, we take a sequence of n random actions (i.e. an n-step
random walk) and observe the resulting state g. We con-
struct a new problem instance with initial state s and goal g.
When n is small, such problem instances are relatively easy
to solve and we can learn a policy to solve all such problem
instances using API starting with a random base policy.

Once we learn a policy for “random-walk problems” with
small n, we increase the value of n until the current pol-
icy performs poorly and then continue to apply API using
the more difficult problem distribution. This process of iter-
atively increasing n and then applying API continues until
we either achieve a policy that performs well on the orig-
inal problem distribution or no more improvement is ob-
served. For more details and empirical results please see
(Fern, Yoon, & Givan 2004).

Acknowledgments
This work was supported in part by NSF grants 9977981-IIS
and 0093100-IIS.

References
Bertsekas, D. P., and Tsitsiklis, J. N. 1996. Neuro-Dynamic
Programming. Athena Scientific.
Fern, A.; Yoon, S.; and Givan, R. 2003. Approximate
policy iteration with a policy language bias. In NIPS.
Fern, A.; Yoon, S.; and Givan, R. 2004. Learning domain-
specific control knowledge from random walks. In ICAPS.
Yoon, S.; Fern, A.; and Givan, R. 2002. Inductive policy
selection for first-order MDPs. In UAI.

edelkamp
94

List of Authors

Bonet, Blai . 74
Botea, Adi . 15
Camilleri, Guy . 21
Casilho, Marcos . 27
Chen, Yixin . 30
Coles, Andrew . 24
Edelkamp, Stefan . 2,7
Englert, Roman . 7
Enzenberger, Markus . 15
Fabini, Patrick . 89
Fern, Alan . 92
Geffner, Héctor . 59, 74
Gerevini, Alfonso . 33
Givan, Robert . 64, 92
Gretton, Charles . 80
Guedes, André . 27
Halsey, Keith . 35
Hansen, Eric A. 61, 77
Haslum, Patrik .38
Helmert, Malte . 41
Hoffmann, Jörg .2,7
Hsu, Chih-Wei . 30
Kambhampati, Subbarao 18
Karabaev, Eldar . 83
Kautz, Henry . 44
Kavuluri, Bharat Ranjan 46
Künzle, Luis . 27
Li, Li . 86
Lima, Tiago . 27
Liporace, Frederico . 7
Littman, Michael . 68, 70
Müller, Martin . 15
Mali, Amol D. 53
Marynowski, João . 27
McDermott, Drew . 48
Montaño, Razer . 27
Onder, Nilufer . 86
Parker, Eric . 51
Price, David . 80
Richter, Silvia .41
Saetti, Alessandro . 33
Sanchez, Javier . 53

Schaeffer, Jonathan . 15
Serina, Ivan . 33
Silva, Fabiano . 27
Skvortsova, Olga . 83
Smith, Amanda . 24
Tang, Minh . 53
Teichteil-Königsbuch, Florent 89
Thiébaux, Sylvie . 7, 80
Toninelli, Paolo . 33
Trüg, Sebastian . 7
U, Senthil . 46
Vidal, Vincent .56, 59
Wah, Benjamin W. 30
Whelan, Garrett. C . 86
Yoon, SungWook . 92
Younes, H̊akan L. S.68, 70
Zalaket, Joseph . 21
Zhengzhu Feng . 77
Zhou, Rong . 61
Zhu, Lin . 64
van den Briel, Menkes 18

