
FCPlanner: A Planning Strategy for First-Order MDPs

Eldar Karabaev
Institute for Theoretical Computer Science

Dresden University of Technology
Dresden, Germany

karabaev@tcs.inf.tu-dresden.de

Olga Skvortsova∗
Institute for Artificial Intelligence
Dresden University of Technology

Dresden, Germany
skvortsova@inf.tu-dresden.de

Introduction
FCPLANNER (Fluent Calculus Planner) is a planning sys-
tem that is based on the first-order value iteration algorithm
(FOVIA) (Großmann, Ḧolldobler, & Skvortsova 2002) for
solving first-order MDPs. Following the idea of symbolic
dynamic programming (SDP) within the Situation Calcu-
lus by Boutilier and colleagues (Boutilier, Reiter, & Price
2001), FOVIA addresses the well-known scalability prob-
lem of the classical dynamic programming algorithms by
employing the abstraction technique, i.e., a state space is
divided into clusters, calledabstract states, and the value
functions are computed for them thereafter. The dynamics
of an MDP is formalized in the probabilistic Fluent Cal-
culus (pFC) that allows for introducing stochastic actions.
Our approach constructs a first-order representation of value
functions and policies by exploiting the logical structure of
the MDP. Thus, FOVIA can be seen as a symbolic (logical)
counterpart of classical value iteration algorithm (Bellman
1957).

Abstract States
We formalize abstract states symbolically, within the Fluent
Calculus (FC) (Ḧolldobler & Schneeberger 1990). Fluent
Calculus, much like Situation Calculus, is a logical approach
to modelling dynamically changing systems based on first-
order logic. One could indeed argue that Fluent Calculus
and Situation Calculus have very much in common. But the
latter has the following disadvantage: Knowledge of the cur-
rent state is represented indirectly via the initial conditions
and the actions which the agent has performed up to a point.
As a consequence, each time a condition is evaluated in an
agent program, the entire history of actions is involved in the
computation. This requires ever increasing computational
effort as the agent proceeds, so that this concept does not
scale up well to long-term agent control (Thielscher 2004).
Fluent Calculus overcomes the aforementioned unfolding
problem by providing the crucial concept of an explicit state
representation. The information on what is true in the cur-
rent state of the world is effortlessly extracted from the state
description without tracing back to the initial state. There-
fore we have opted for Fluent Calculus as logical formalism

∗Supported by the research training group GRK 334/3 (DFG).
Corresponding author.

underlying our automated symbolic dynamic programming
approach.

In FC, functions whose values vary from state to state
are calledfluentsand are denoted by function symbols. For
example, the fluenton(X, table) denotes the presence of a
block X on the table. Astateis a multiset of fluents rep-
resented as a term, calledfluent term, using a constant1
denoting the empty multiset and a binary function symbol
◦ denoting multiset union that is associative, commutative
and admits unit element. For example, a state in which the
block a is on the blockb andb is on the table is specified
by on(a, b) ◦ on(b, table). Constants are denoted by small
letters, variables by capital ones and substitutions byθ or σ.

Abstract statesare characterized by means of conditions
that must hold in each ground instance thereof and, thus,
they represent sets of real-world states. Informally, ab-
stract states can be specified by stating that particular fluent
terms do or do not hold. We refer to such abstract states as
CN-states, whereC stands for conjunction andN for nega-
tion, respectively.

Formally, letL be a set of fluent terms. ACN-stateis a
pair (P,N ), whereP ∈ L, N ∈ 2L. Let ·M be a mapping
from fluent terms to multisets of fluents, which can be for-
mally defined as follows:1M = {̇}̇ or FM = {̇F }̇, if F is
a fluent, or(F ◦ G)M = FM ∪̇ GM , whereF,G are fluent
terms anḋ∪ is a multiset union. LetI = (∆, ·I) be an inter-
pretation, whose domain∆ is the set of all finite multisets of
ground fluents and everyCN-stateZ = (P,N ) is mapped
onto

ZI = {d ∈ ∆ | ∃θ. (Pθ)M
.
⊆ d ∧

∀N ∈ N .∀σ.((Nθ)σ)M
.

* d} ,

where
.
⊆ is a submultiset relation.

In other words, theP -part of a stateZ describes prop-
erties that a real-world state should satisfy, whereasN -
part specifies the properties that are not allowed to ful-
fil. For example, theCN-stateZ = (on(X, table) ◦
red(X), {on(Y,X)}) represents all states in which there ex-
ists a red object that is on the table and clear, viz., none of
other objects covers it.

Thus, the real-world state

z =
.

{on(a, table), red(a), on(b, table), green(b)
.

}



is specified byZ. Whereas,

z′ =
.

{on(a, table), red(a), on(b, a)
.

}

is not.
Intuitively, CN-statescan be represented as first-order for-

mulae. The above-givenCN-stateZ corresponds to the fol-
lowing formula:

∃X.on(X, table) ∧ red(X) ∧ ∀Y.¬on(Y,X) .

Please note thatCN-statesshould be thought of as incom-
plete state descriptions, i.e., the properties that are not listed
in eitherP - orN -part can hold or not.

Stochastic Actions
The technique for introducing stochastic actions within the
probabilistic Fluent Calculus is to decompose a stochastic
action into deterministic primitives under nature’s control,
referred to asnature’s choices. We use a relation sym-
bol choice/2 to model nature’s choice. Consider the action
putdown(T,B) of putting a blockT down onto a blockB
from the blocksworld scenario:

choice(putdown(T,B), A) ↔
(A = putdown1(T,B) ∨A = putdown2(T,B)),

where putdown1(T,B) and putdown2(T,B) define two
nature’s choices for actionputdown(T,B). The nature’s
choiceputdown1(T,B) states the successful putting of the
block T down ontoB. Whereas,putdown2(T,B) defines
the failure execution of theputdown-action which results in
the blockT falling down on the table.

For each of nature’s choicesaj(X) associated with an
action a(X) with parametersX we define the probabil-
ity prob(aj(X), a(X), Z). It denotes the probability with
which one of nature’s choicesaj(X) is chosen in aCN-state
Z. For example,

prob(putdown1(T,B), putdown(T,B), Z) = .7

states that the probability for the successful execution of the
putdown action inZ is .7.

FOVIA is an iterative approximation algorithm for con-
structing optimal policies. The difference to classical case is
that it produces a first-order representation of optimal poli-
cies by utilizing the logical structure of MDP. The algorithm
itself can be found in (Großmann, Hölldobler, & Skvortsova
2002).

Preprocessing
In order to convert a PPDDL goal description into a goal
state space that is used as an input of our FOVIA algorithm,
we have designed a procedure for translating first-order for-
mulae into a set ofCN-states.

Since a state space is considered as a disjunction of
CN-states, we first convert a FO formula into DNF. We start
with pushing all quantifiers in front of the formula and con-
vert the quantifier-free part into DNF thereof. In order to
check whether a disjunct can be directly converted into a

CN-state, we have to examine its variables. If a disjunct con-
tains no ‘bad’ variables then it can be directly converted into
a respectiveCN-state. Otherwise, the formula itself needs
an additional treatment.

The procedure of marking variables as ‘bad’ works as
follows: If a variable occurring within a positive literal is
bounded universally then it is marked as ‘bad’. Intuitively,
based on the semantics ofCN-states, the variables that oc-
cur in theP -part of aCN-stateare considered existentially
bounded. Each ‘bad’ variable is eliminated via groundiza-
tion.

For example, in the following formula

∀X.∃Y.red(X) ∧ blue(Y )

the variableX will be marked as ‘bad’.
Assume that we have only two blocksa andb in the do-

main. After eliminatingX (and slight simplification), we
obtain:

red(a) ∧ red(b) ∧ ∃Y.blue(Y ) .

The variableY will not be marked as ‘bad’, hence, it will not
be grounded. Similarly, the negative literals are checked for
‘bad’ variables. The same technique for eliminating ‘bad’
variables is applied for action descriptions.

Although our approach relies on partial groundization of
state and action descriptions, there are domains, e.g., colored
blocksworld, where most variables are marked as ‘good’,
and hence, need not be grounded.

Regression of Abstract States
The classical as well as first-order value iteration algorithms
are intimately related to regression of states. The crucial dif-
ference of the symbolic value iteration is that the regression
is performed on the abstract states instead of the single states
themselves.

Given aCN-stateZ and an action descriptionA, our re-
gression procedure produces the set of all possible predeces-
sor CN-statesZi such thatZ is reachable from each ofZi

by executingA. In FOVIA, actions are specified by precon-
ditions that are represented asCN-statesand STRIPSstyle
effectsQ+ andQ−.

We now illustrate the regression procedure with an ex-
ample from the blocksworld scenario. Here, we present one
regression step through actionputdown(Top,Bottom) that
has two nature’s choices, given below:

putdown1(Top,Bottom)
Pre: (holding(Top), {on(X, Bottom)})
Eff : Q+ = on(Top,Bottom)

Q− = holding(Top)
putdown2(Top,Bottom)

Pre: (holding(Top), {on(X, Bottom)})
Eff : Q+ = on(Top, table)

Q− = holding(Top) .

The regression of theCN-stateZ:

Z = (on(B0, B1) ◦ on(B1, table) ◦ on(B2, table), ∅)



yields the following predecessor statesZi:

Z1 = (holding(B2) ◦ on(B0, B1) ◦ on(B1, table), ∅)
Z2 = (holding(B2) ◦ on(B0, B1) ◦ on(B1, table)◦

on(B3, table), {on(B4, B3)})
Z3 = (holding(B0) ◦ on(B1, table) ◦ on(B2, table),

{on(B3, B1)}) ,

whereZ1 represents all real-world states, where a gripper
holds a blockB2, a blockB0 is onB1 andB1 is on the table;
Z2 asserts the same information asZ1 and additionally states
that some blockB3 is on the table and there is no such block
B4 that is onB3; andZ3 is interpreted as the set of all real-
world states, where a gripper holds a blockB0, blocksB1

andB2 are on the table, and there is no such blockB3 that
is onB1.

The regression procedure can be outlined as follows. We
first check whether theQ− effects and theP -part of a
CN-stateZ are consistent wrt. each other. If the answer is
no, then the regression procedure stops delivering the empty
set of predecessorCN-states. Otherwise, a predecessor state
is constructed as follows: TheQ+ effects are subtracted
from theP -part of theCN-stateZ and the result is joined
with theP -part of the action preconditions forming theP -
part of a predecessorCN-state. Analogously, theN -part of
a predecessorCN-stateis built by subtracting theQ− effects
from theN -part ofZ and joining the result with theN -part
of the action preconditions. If the resulting predecessor state
is consistent then it is added to the set of theZ ’s predecessor
states. We describe the consistency check in more detail in
the section on optimizations.

The operations over fluent terms and sets of fluent terms,
e.g., aforementioned subtraction and union, are based on
solving the submultiset matching problem that usually has
multiple solutions (Großeet al. 1992). This implies that
the regression procedure may deliver multiple predecessor
states. Recalling our running example, bothCN-statesZ1

and Z3 were obtained as a result of the regression ofZ
through a single nature’s choiceputdown1.

Some Optimizations
In general, a state description may contain two kinds of in-
consistencies. The inconsistency of the first kind takes place
when some element of theN -part contradicts with theP -
part. For example, in a state description(red(a), {red(X)})
theP -part asserts that the blocka is red, whereas theN -part
prohibits any blockX of being red. In this case, the consis-
tency test will include a simple syntactic check.

The second kind of inconsistencies is referred to as
domain-dependent. For example, the state description
(empty◦holding(a), ∅) is formally consistent (wrt. the pre-
vious kind of inconsistency). And only after having learned
that the domain contains a single gripper, thisCN-stateis
turned to be inconsistent. In this case, the consistency test
uses additional domain axioms which, e.g., state that the
combination of fluentsempty andholding(X) is forbidden.

The state space that represents a value function after some
iteration step of FOVIA algorithm may contain redundan-
cies. For example, consider a state space that consists
of two abstract statesZ1 = (holding(a), ∅) and Z2 =

(holding(X), ∅) that are both assigned the same value, say,
of 10. TheCN-stateZ1 represents the set of all real-world
states that do satisfy the factholding(a). At the same time,
the CN-stateZ2 describes all real-world states represented
by Z1 plus additional states, whereX is instantiated by a
constant different froma. Since the values associated with
Z1 and Z2 are the same,Z1 can be painlessly removed
without loss of information. In FCPLANNER, we employ
the automated normalization procedure that, given a state
space, delivers an equivalent one that contains no redundan-
cies (Skvortsova 2003). The technique employs the notion
of a subsumption relation that enables to determine which
states are redundant and can be removed from the state space
therefore.

References
Bellman, R. E. 1957.Dynamic Programming. Princeton,
NJ, USA: Princeton University Press.
Boutilier, C.; Reiter, R.; and Price, B. 2001. Symbolic Dy-
namic Programming for First-Order MDPs. In Nebel, B.,
ed.,Proceedings of the Seventeenth International Confer-
ence on Artificial Intelligence (IJCAI-01), 690–700. Mor-
gan Kaufmann.
Große, G.; Ḧolldobler, S.; Schneeberger, J.; Sigmund, U.;
and Thielscher, M. 1992. Equational logic programming,
actions, and change. 177–191. MIT Press.
Großmann, A.; Ḧolldobler, S.; and Skvortsova, O. 2002.
Symbolic Dynamic Programming within the Fluent Calcu-
lus. In Ishii, N., ed.,Proceedings of the IASTED Interna-
tional Conference on Artificial and Computational Intelli-
gence, 378–383. Tokyo, Japan: ACTA Press.
Hölldobler, S., and Schneeberger, J. 1990. A new deductive
approach to planning.New Generation Computing8:225–
244.
Skvortsova, O. 2003. Towards Automated Symbolic Dy-
namic Programming. Master’s thesis, TU Dresden.
Thielscher, M. 2004. FLUX: A logic programming method
for reasoning agents.Theory and practive of Logic Pro-
gramming.


