
NMRDPP: Decision-Theoretic Planning
with Control Knowledge.

Charles Gretton, David Price, and Sylvie Thíebaux
Computer Sciences Laboratory

The Australian National University
Canberra, ACT, Australia

{charlesg,davidp,thiebaux }@csl.anu.edu.au

Abstract

We discuss NMRDPP, a system for solving decision pro-
cesses with non-Markovian reward. More specifically, target
decision processes exhibit Markovian dynamics and reward-
ing behaviours are modelled as state trajectories specified in a
linear temporal logic. In addition to implementing structured,
tabular and online MDP solution algorithms, NMRDPP can
exploit domain specific control knowledge. State trajectories
which violate the users knowledge/intuition regarding use-
ful dynamics can be pruned from consideration by the MDP
solution algorithm. Thus, in addition to facilitating concise
specification of complex reward structures, NMRDPP can be
used to greatly speed up policy computation for propositional
MDPs. To our knowledge, NMRDPP is the only implemen-
tation of solution algorithms designed to solve decision pro-
cesses with non-Markovian rewards.

Introduction
NMRDPP (Grettonet al. 2003) (non–Markovian Reward
Decision Process Planner), is a general purpose planner for
non-Markovian reward1 (and hence also Markovian) propo-
sitional decision processes. Target decision processes are
usually stochastic, exhibiting Markovian dynamics. The re-
ward is modelled as a set of state trajectories, called be-
haviours, specified in a linear temporal logic. NMRDPP was
originally developed in order to carry out an experimental
evaluation of approaches for solving decision processes with
non-Markovian reward. Implemented in C++, NMRDPP
supports a range of experimental algorithms and frameworks
for solving NMRDPs. It is suited to participation in IPPC’04
as it facilitates planning in completely observable stochastic
domains. NMRDPP is the first of its kind; previously no ap-
proaches to solving NMRDP had been fully implemented,
and there was no work presenting any experimental results.

There have been two proposals regarding languages suit-
able for expressing rewarding behaviours. These include
PLTL (Bacchuset al. 1996) a linear temporal logic of the
past and $FLTL (Thi´ebauxet al. 2002) a linear tempo-
ral logic of the future with reward. In either case, NM-
RDPP translates NMRDPs into corresponding equivalent
MDPs (XMDPs) which incorporate temporal variables cap-
turing sufficient history to make the reward of the expanded

1For our purposes reward can be negative, thus we don’t distin-
guish between reward and cost.

process Markovian2. Available translation procedures are
unique and not particularly straightforward (Bacchuset al.
1996; Bacchuset al. 1997; Thiébauxet al. 2002). NM-
RDP solution algorithms differ in their representations of
domain dynamics, the XMDP and in the class, structured or
non-structured, of MDP solution methods to which they are
tied. NMRDPP can solve target decision problems online
(during translation) using LAO* heuristic search techniques
(Hansen and Zilberstein 2001). Alternatively, the complete
XMDP can be generated and passed to classical structured
or tabular policy computation algorithms such as SPUDD
(Boutilier et al. 1995; Hoeyet al. 1999) or policy/value
iteration (Howard 1960) respectively.

Using the same mechanisms devised for non-Markovian
reward, state trajectories which violate the users knowl-
edge/intuition regarding useful dynamics can be pruned
from consideration by the MDP solution algorithm. The
specification of a set of such state sequences is calledcontrol
knowledge, and has been used to great effect by the deter-
ministic planning community (Bacchus and Kabanza 2000).
Thus, although there is no advantage to be gleaned from con-
cise specification of complex non-Markovian reward during
the competition, NMRDPP can exploit control knowledge
to greatly speed up policy computation given propositional
MDPs. By pruning states which violate specific behaviours,
we can mitigate the effect of Bellman’s so called curse of
dimensionality.

In the remainder of this document, we shall present an
overview of MDPs and NMRDPs and discuss their differ-
ences. We shall briefly discuss the logics that have been
adopted to model reward and control knowledge, focusing
in particular on $FLTL. We shall provide some examples of
using $FLTL to specify control knowledge for a stochastic
blocks-world domain. We shall conclude by summarising
how we intend to compete using NMRDPP in the IPPC’04.

MDPs and NMRDPs
Problem domains which participants shall consider during
the main and learning IPPC’04 tracks, although specified
in PPDDL1.0 (Younes and Littman 2004), can be mod-
elled using the MDP formalism. Indeed, decision theoretic

2There is a mapping from XMDP states to the reals.

1

planning problems are typically modelled as propositional
MDPs such that domain statesS are characterised by propo-
sitions, numeric reward is allocated to propositions/states
according to their associated desirability and the dynamics
of the system is given by actionsA. We typically writeA(s)
to denote actions applicable at states. A solution algorithm,
provided with start statesS0 ⊆ S, generates a stationary
policy π : S → A (mapping from states to actions) which
adherence to during system execution results in optimal be-
haviour over a discounted infinite horizon.

The standard MDP formulation is state based, comprising
afiniteset of statesS and actionsA. Actions induce stochas-
tic state transitions, wheres, t ∈ S, a ∈ A andPr(s, a, t)
gives the probability of a transition from states to t given
actiona is executed at states. Also present is a real-valued
reward functionR : S → <. The value of a stationary policy
π at a states0 ∈ S0, V (π), is given by Equation 1.

V (π) = lim
n→∞ E

[n∑
i=0

βiR(Γi) | π, Γ0 ∈ S0

]
(1)

Hereβ is a discount factor usually close to1 andΓ ∈ S∗
is a finite sequence of states whereΓi is thei’th state inΓ.
We consider a policyπ∗ optimal if, for all π, we have that
V (π∗) ≥ V (π).

The formulation for NMRDPs is identical up to the re-
ward function whose domain is extended toS∗, e.g. R :
S∗ → <. Here,Γ(i) is thei length subsequence ofΓ starting
atΓ0. As before, the value ofπ, which we seek to maximise,
is the expectation of the discounted cumulative reward over
an infinite horizon:

V (π) = lim
n→∞ E

[n∑
i=0

βiR(Γ(i)) | π, Γ0 ∈ S0

]
(2)

As introduced, NMRDP solution methods facilitate gen-
eration of an optimal policy by first expanding the NMRDP
into an XMDP, and then applying either traditional or struc-
tured MDP solution algorithms to the resulting construct.

Reward Specification and Control Knowledge
NMRDPP supports the use of two linear temporal logics
in the specification of rewarding state trajectories and con-
trol knowledge. These are PLTL (Bacchuset al. 1996) and
$FLTL (Thiébauxet al. 2002). The logic PLTL includes the
modalities� (previously),S (since),♦- f ≡ >Sf (once) and
�f ≡ ¬♦- ¬f (always in the past) while $FLTL includes©φ
(next), U (weak until),�φ ≡ φU⊥ (always), and a propo-
sitional constant$ (receive reward now)3.

A translation from an NMRDP into a corresponding MDP
is based on the fact that a PLTL, resp. $FLTL, wffφ can be
regressed (Bacchus and Kabanza 2000), resp. progressed, to
a formula which identifies what must hold in the past, resp.
future, forφ to hold in a current state. Given this progres-
sion/regression operator, methods annotate grounded states

3See the respective papers for a comprehensive summary of the
two logics.

to form expanded states with formulae (temporal variables)
which are sufficient to determine the reward allocation at any
state reachable fromS0. Methods are characterised by the
properties of the XMDP which they generate. Given a PLTL
reward specification NMRDPP can attempt to generate the
minimal MDP required to allocate reward given specified
behaviours. Using the language $FLTL, NMRDPP is able to
produce a blind minimal XMDP online. Intuitively, a blind
minimal XMDP is the smallest MDP achievable by online
translation.

As a derivative of FLTL, $FLTL is particularly suitable
for expressing domain specific control knowledge (Bacchus
and Kabanza 2000) which is useful in the context of online
solution algorithms. That is, a decision process can be mod-
ified by excluding from it sequences of states which violate
a control hypotheses expressed in $FLTL.

Blocks-World with $FLTL Control Knowledge
We have that a stochastic version of blocks-world will fea-
ture in the learning track at IPPC’04. Using the language of
PPDDL1.0, BW hasblock and table types, predicates
holding : block andOn : (block × >), and two ac-
tion symbolspick-up : (block × >) andput-down :
(block × >). A BW state comprises two ground sets of
predicate symbols, those which characterise the current and
goal states. Pictorially, a BW state appears as follows:
”∀b.¬holding (b)”
Goal:On(D, B), On(B, table),
. . . , On(C, table)

Conf:On(A, D), On(D, B),
. . . , On(C, table)

C B

D

A

C A B

D

configuration
Goal configurationCurrent

table table

We have that thepick-up (a, b) action is only executable
if table = a∨@block (c).On(c, a) (i.e. a is clear). Simi-
larly put-down (a, b) is only available ifholding (a) and
b is clear. Assuming precondition satisfaction,pick-up (a)
either causesblock a to be held, or possibly fall on the
table . The actionput-down (a, b) either dropsa on the
table or places it on the second argument objectb.

This stochastic BW isn’t particularly different from its
deterministic relatives. Thus, we can appeal to near opti-
mal planning strategies such as US and GN1 (Slaney and
Thiébaux 2001) in developing control knowledge. For
the purposes of this presentation we introduce the pred-
icate InPosition (a, b) for a and b of type block .
InPosition (a, b) is false if On(a, b) is not an element
of the goal configuration, and otherwise true whena andb
are in their goal position. Notice that this is a derived pred-
icate, i.e. given our example state,InPosition (D, B) ≡
On(D, B) ∧ On(B, table). Thus, the following control
knowledge is expressible without change to the competition
specification.

The first piece of control knowledge that we consider pre-
vents NMRDPP from disturbing towers of blocks which sat-
isfy the goal. For eachOn(bi, bj), a control sentence of the
following form is sufficient:

2

�((On(bi, bj) ∧ InPosition (bi, bj))
→ (©¬holding (bi)))

By pruning from a BW domain states which violate the
above sentence, NMRDPP will not consider policies which
disturb blocks that are in their goal position. We can further
prune the range of policies which NMRDPP shall consider
by noticing that ifOn(bi, bj) is false wherebj is ablock ,
and after two action invocationsOn(bi, bj), then this is only
valuable whereInPosition (bi, bj). This knowledge is
expressed in $FLTL as follows.

�((¬On(bi, bj) ∧©©(On(bi, bj)))
→ (©©InPosition (bi, bj)))

Annotating BW problems with the above control knowl-
edge greatly increases the situations in which NMRDPP is
competitive. Because progression of $FLTL formulae is lin-
ear time in the formula length, it is important that we avoid
crippling NMRDPP by providing too much, mostly redun-
dant or too complex knowledge. Furthermore, we must en-
sure that knowledge generation for competition domains is
practical.

Participation
NMRDPP, provides an implementation of several solution
approaches in a common framework, within a single sys-
tem, and with a common input language. The framework
includes a highly interactive command line interface which
allows the user to exert fine control over the planning pro-
cess. The input language enables specification of actions,
initial states, rewards, and control-knowledge. Initial states
are specified as part of the control knowledge or as explicit
assignments to propositions. Of interest to us here is the
format for the action specification, which is essentially the
same as in the SPUDD system (Hoeyet al. 1999). In par-
ticular, the precondition (BDD), reward and probabilistic ef-
fects for each action are specified by a collection of decision
trees, including one for each domain proposition which the
action effects. When the input is parsed, the action specifi-
cation trees are converted into ADDs by the CUDD package
(Somenzi 2001).

The input language in which competition domains are
specified is PPDDL1.0. We will be able to accommodate
this in one of two ways. 1) Because both NMRDPP and
the competition software code are implemented in C++, we
can directly take advantage of competition code which fa-
cilitates exploration of the explicit propositionalised state
space. In this case we restrict NMRDPP to state-based so-
lution algorithms. 2) We can translate PPDDL1.0 problem
specifications into the NMRDPP input language. This is
an enticing option because the competition code contains
functionality implemented by H˚akan L. S. Younes which
encodes grounded problem actions as ADDs. There is in-
sufficient space for us to include the details here, however
such grounded action ADDs can be converted into action
descriptions in the NMRDPP input format. In essence, such
a process extracts diachronic and synchronic dependencies
between propositions in an action’s conditional probabil-
ity model in order to construct decision trees/ADDs en-

coding action preconditions, reward and effects on individ-
ual propositions. Where we generate NMRDPP input from
PPDDL1.0, the action specifications are not concise4 as in-
formation regarding pre/post-action-variable dependencies
is lost in translation. The advantage however, is that we
do not restrict ourselves to a subset of solution algorithms
supported by NMRDPP.

We intend to enter NMRDPP in both themainandlearn-
ing tracks of IPPC’04. In themain track we do not expect
much from NMRDPP as it is ladened with some overhead
due to support for non-Markovian reward. For theLearn-
ing Track, we shall develop “hand coded” control knowledge
specific to each competition domain in order to make NM-
RDPP competitive. Although this does not position us well
to compete with first-order learners which are not restricted
to a propositional domain model, we hope to be competi-
tive in small to medium domain instances. At the time of
writing, it was not clear which of the structured, tabular and
online algorithms NMRDPP supports, we shall use in the
competition.

References
F. Bacchus and F. Kabanza. Using temporal logic to express
search control knowledge for planning.Artificial Intelligence,
116(1-2), 2000.

F. Bacchus, C. Boutilier, and A. Grove. Rewarding behaviors. In
Proc. AAAI-96, pages 1160–1167, 1996.

F. Bacchus, C. Boutilier, and A. Grove. Structured solution meth-
ods for non-markovian decision processes. InProc. AAAI-97,
pages 112–117, 1997.

C. Boutilier, R. Dearden, and M. Goldszmidt. Exploiting struc-
ture in policy construction. InProc. IJCAI-95, pages 1104–1111,
1995.

Charles Gretton, David Price, and Sylvie Thi´ebaux. Implemen-
tation and comparison of solution methods for decision processes
with non-markovian rewards. InProc. UAI-03, 2003.

E. Hansen and S. Zilberstein. LAO∗: A heuristic search algorithm
that finds solutions with loops.Artificial Intelligence, 129:35–62,
2001.

J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier.
SPUDD: stochastic planning using decision diagrams.
In Proc. UAI-99, 1999. SPUDD is available from
http://www.cs.ubc.ca/spider/staubin/Spudd/.

R.A. Howard. Dynamic Programming and Markov Processes.
MIT Press, Cambridge, MA, 1960.

J. Slaney and S. Thi´ebaux. Blocks world revisited.Artificial In-
telligence, 125:119–153, 2001.

F. Somenzi. CUDD: CU Decision Diagram Package. Available
from ftp://vlsi.colorado.edu/pub/, 2001.

S. Thiébaux, F. Kabanza, and J. Slaney. Anytime state-based solu-
tion methods for decision processes with non-markovian rewards.
In Proc. UAI-02, pages 501–510, 2002.

H. Younes and M. Littman. PPDDL1.0: An extension to
PDDL for Expressing Planning Domains with Probabilistic Ef-
fects, 2004.http://www.cs.cmu.edu/ lorens/papers/ppddl.pdf.

4We find that for large domains, i.e. BW with10 > blocks for
example, a translation into NMRDPP input format is impractical.

3

