

In Defense of PDDL Axioms∗


Sylvie Thiébaux
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Abstract
There is controversy as to whether explicit sup-
port for PDDL-like axioms and derived predicates is
needed for planners to handle real-world domains
effectively. Many researchers have deplored the
lack of precise semantics for such axioms, while
others have argued that it might be best to compile
them away. We propose an adequate semantics for
PDDL axioms and show that they are an essential
feature by proving that it is impossible to compile
them away if we restrict the growth of plans and
domain descriptions to be polynomial. These re-
sults suggest that adding a reasonable implementa-
tion to handle axioms inside the planner is benefi-
cial for the performance. Our experiments confirm
this suggestion.


1 Motivation
It is not uncommon for planners to supportderivedpredi-
cates, whose truth in the current state is inferred from that
of somebasicpredicates via someaxiomsunder the closed
world assumption. While basic predicates may appear as ef-
fects of actions, derived ones may only be used in precon-
ditions, effect contexts and goals. Planners in this family
include the partial order plannerUCPOP [3], the HTN plan-
ner SHOP [18], and the heuristic search plannerGPT [4], to
cite but a few. The original version ofPDDL [17], the Inter-
national Planning Competition language, also featured such
axioms and derived predicates. However, these were never
used in competition events, and did not survivePDDL2.1, the
extension of the language to temporal planning[8].


This is unfortunate, as the lack of axioms impedes the abil-
ity to elegantly and concisely represent real-world domains.
Such domains typically require checking complex conditions
which are best built hierarchically, from elementary con-
ditions on the state variables to increasingly abstract ones.
Without axioms, preconditions and effect contexts quickly
become unreadable, or postconditions are forced to include
supervenient properties which are just logical consequences
of the basic ones—that is when extra actions do not need to
be introduced or action descriptions customised. Moreover,
axioms provide a natural way of capturing the effects of ac-
tions on common real world structures such as paths or flows,
as we then need to reason about how the transitive closure of
∗The full proofs of the theorems appear in the techreport:


http : //csl.anu.edu.au/∼thiebaux/papers/trarp0103.pdf.


a basic relation is affected.1 There is no intuitive way to up-
date transitive closures in the body of aPDDL action, while
it is easy to axiomatize them recursively by means ofPDDL
axioms (see[4] for a power flow example).


The most common criticism of the originalPDDL axioms
was that their semantics was ill-specified, and that the condi-
tions under which the truth of the derived predicates could be
uniquely determined were unclear. We remedy this by pro-
viding a clear semantics forPDDL axioms while remaining
consistent with the original description in[17]. In particular,
we identify conditions that are sufficient to ensure that the ax-
ioms have an unambiguous meaning, and explain how these
conditions can efficiently be checked.


Another common view is that axioms are a non-essential
language feature which it might be better to compile away
than to deal with explicitly, compilation offering the advan-
tage of enabling the use of more efficient, simple, standard
planners without specific treatment[10; 9; 7]. We bring new
insight to this issue. We give evidence that axioms add signif-
icant expressive power toPDDL. We take “expressive power”
to be a measure of how concisely domains and plans can be
expressed in a formalism and use the notion of compilability
to analyse that[19]. As it turns out, axioms are an essen-
tial feature because it is impossible to compile them away—
provided we require the domain descriptions to grow only
polynomially and the plans to grow only polynomially in the
size of the original plans and domain descriptions. Of course,
if we allow for exponential growth, then compilations become
possible and we specify one such transformation, which, un-
like those previously published[10; 9; 7], works without re-
striction. However, the above mentioned results suggest that
it might be much more efficient to deal with axioms inside the
planner than to compile them away. In fact, our experiments
with FF [11] suggest that adding even a simple implementa-
tion of axioms to a planner clearly outperforms the original
version of the planner solving the compiled problem.


2 Syntax and Semantics
We remain in the sequential planning setting ofPDDL2.1
level 1, which is essentially that of the version ofPDDL with
ADL actions used in the 2000 planning competition. See[2]
for a description of the syntax. For clarity we do not consider
types. Although we see axioms with conditions on numeric


1In that respect,PDDL axioms offer advantages over the use of
purely logical axioms as in the original version ofSTRIPS[14].







fluents, such as those featured inPDDL2.1 level 2, as very
desirable, we do not consider them here for simplicity.


Let B and D be two sets of predicate symbols with
B ∩ D = ∅, called the set of basic and derived predicates, re-
spectively. Symbols inD are not allowed to appear in the
initial state description and in atomic effects of actions, but
may appear in preconditions, effect contexts, and goals. The
domain description features a set of axiomsA. These have the
form (: derived (d ?~x) (f ?~x)), whered ∈ D, and wheref
is a first-order formula built from predicate symbols inB∪D
and whose free variables are those in the vector~x.


Intuitively, an axiom(: derived (d ?~x) (f ?~x)) means that
when(f ?~x) is true at the specified arguments in a given state,
we shouldderivethat(d ?~x) is true at those arguments in that
same state. Unlike traditional implications, these derivations
are not to be contraposed (the negation off is not derived
from the negation ofd), and what cannot be derived as true is
false (closed world assumption). Because of the closed world
assumption, there is never any need to explicitly derive neg-
ative literals, so the constraint that the consequent of axioms
bepositiveliterals does not make us lose generality.


In sum, axioms are essentially (function free) logic pro-
gram statements[15]. For example, from the basic predicate
on and the predicateholding in Blocks World, we can define
the predicateclear, as follows:


(:derived (clear ?x)
(and (not (holding ?x))


(forall (?y) (not (on ?y ?x))))))


Another classic isabove , the transitive closure ofon , e.g.:


(:derived (above ?x ?y)
(or (on ?x ?y)


(exists (?z) (and (above ?x ?z)
(above ?z ?y)))))


In a planning context, it is natural and convenient to re-
strict attention to so-calledstratified axiom sets—stratified
logic programs avoid unsafe use of negation and have an un-
ambiguous, well-understood semantics[1]. The idea behind
stratification is that some derived predicates should first be
defined in terms of the basic ones possibly using negation, or
in terms of themselves (allowing for recursion) butwithout
using negation. Next, more abstract predicates can be defined
building on the former, possibly using their negation, or in
terms of themselves but without negation, and so on. Thus, a
stratified axiom set is partitionable into strata, in such a way
that the negation normal form2 (NNF) of the antecedent of an
axiom defining a predicate belonging to a given stratum uses
arbitrary occurrences of predicates belonging to strictly lower
strata andpositiveoccurrences of predicates belonging to the
same stratum. Basic predicates may be used freely.


Definition 1 An axiom setA is stratified iff there exists a
partition (stratification) of the set of derived predicatesD
into (non-empty) subsets{Di, 1 ≤ i ≤ n} such that for all
(: derived (di ?~x) (f ?~x)) ∈ A:


1. if dj appears inNNF(f ?~x), thendi ∈ Di anddj ∈ Dj
such thatj ≤ i,


2. if dj appears negated inNNF(f ?~x), thendi ∈ Di and
dj ∈ Dj such thatj < i.


2In a formula inNNF, negation occurs only in literals.


Note that any stratification{Di, 1 ≤ i ≤ n} of D induces a
stratification{Ai, 1 ≤ i ≤ n} of A in the obvious way:Ai =
{(: derived (di ?~x) (fi ?~x)) ∈ A | di ∈ Di}. Note also that
when no derived predicate occurs negated in theNNF of the
antecedent of any axiom, a single stratum suffices. Several
planning papers have considered this special case[10; 9; 7].


Working through the successive strata, applying axioms in
any order within each stratum until a fixed point is reached
and then only proceeding to the next stratum, always leads to
the same final fixed point independently of the chosen strati-
fication[1, p. 116]. It is this final fixed point which we take
to be the meaning of the axiom set.


We now spell out the semantics formally. Since we have a
finite domain and no functions, we identify the objects in the
domain with the ground terms (constants) that denote them,
and states with finite sets of ground atoms. More precisely, a
state is taken to be a set of groundbasicatoms: the derived
ones will be treated as elaborate descriptions of the basic
state. In order to define the semantics, however, we first need
to consider an extended notion of “state” consisting of a setS
of basic atoms and an arbitrary setD of atoms in the derived
vocabulary. The modeling conditions for extended states are
just the ordinary ones of first order logic, as though there
were no relationship betweenS andD. Where?~x denotes a
vector of variables and~t denotes a vector of ground terms,
we define:


Definition 2
〈S,D〉 |= (b~t) for b ∈ B iff (b~t) ∈ S
〈S,D〉 |= (d~t) for d ∈ D iff (d~t) ∈ D
〈S,D〉 |= (not f) iff 〈S,D〉 6|= f
〈S,D〉 |= (and f1 f2) iff 〈S,D〉 |= f1 and〈S,D〉 |= f2


〈S,D〉 |= (or f1 f2) iff 〈S,D〉 |= f1 or 〈S,D〉 |= f2


〈S,D〉 |= (forall (?~x) (f ?~x)) iff 〈S,D〉 |= (f ~t) for all ~t
〈S,D〉 |= (exists (?~x) (f ?~x)) iff 〈S,D〉 |= (f ~t) for some~t


Applying axiom a ≡ (: derived (d ?~x) (f ?~x)) in a
stateS augmented with derived atomsD, results in the set
[[a]](S,D) of further derived atoms:


Definition 3


[[a]](S,D) =
{


(d~t) | 〈S,D〉 |= (f ~t), ~t is ground
}


Given this, we associate stratumAi with the function
[[A]]i which maps a given basic stateS to the least fixed
point attainable by applying the axioms inAi starting from
the extended state consisting ofS and of the set of ground
derived atoms returned at the previous stratum by[[A]]i−1.
The stratified axiom setA denotes the function[[A]] = [[A]]n:


Definition 4 Let {Ai, 1 ≤ i ≤ n} be an arbitrary stratifica-
tion for a stratified axiom setA. For each stateS, let:


[[A]]0(S) = ∅, and for all1 ≤ i ≤ n
[[A]]i(S) =


⋂{
D |


⋃
a∈Ai


[[a]](S,D) ∪ [[A]]i−1(S) ⊆ D
}


Then[[A]](S) is defined as[[A]]n(S).
Finally, given a stratified axiom setA, we writeS |=


A
f to


indicate that a formulaf composed of both basic and derived
predicates holds in stateS:







Algorithm 1 Stratification
1. function STRATIFY(D, A)
2. for each i ∈ D do
3. for each j ∈ D do
4. R[i, j]← 0
5. for each (: derived (j ?~x) (f ?~x)) ∈ A do
6. for each i ∈ D do
7. if i occurs negatively inNNF(f ?~x) then
8. R[i, j]← 2
9. else if i occurs positively inNNF(f ?~x) then


10. R[i, j]← MAX (1, R[i, j])
11. for each j ∈ D do
12. for each i ∈ D do
13. for each k ∈ D do
14. if M IN(R[i, j], R[j, k]) > 0 then
15. R[i, k]← MAX(R[i, j], R[j, k], R[i, k])
16. if ∀i ∈ D R[i, i] 6= 2 then
17. stratification← ∅, remaining ← D, level← 1
18. while remaining 6= ∅ do
19. stratum← ∅
20. for each j ∈ remaining do
21. if ∀i ∈ remaining R[i, j] 6= 2 then
22. stratum← stratum ∪ {j}
23. remaining ← remaining \ stratum
24. stratification← stratification ∪ {(level, stratum)}
25. level← level + 1
26. return stratification
27. else fail


Definition 5 S |=
A
f iff 〈S, [[A]](S)〉 |= f


This modeling relation is used when applying an action in
stateS to check preconditions and effect contexts, and to de-
termine whetherS satisfies the goal. This is the only change
introduced by the axioms into the semantics ofPDDL and
completes our statement of the semantics. The rest carries
over verbatim from[2].


Checking that the axiom set in a domain description is
stratified and computing a stratification can be done in poly-
nomial time in the size of the domain description, using Algo-
rithm 1. The algorithm starts by building a|D| × |D| matrix3


R such thatR[i, j] = 2 when it follows from the axioms that
predicatei’s stratum must be strictly lower than predicatej’s
stratum,R[i, j] = 1 when i’s stratum must be lower than
j’s stratum but not necessarily strictly, andR[i, j] = 0 when
there is no constraint between the two strata (lines 2-15).R
is first filled with the values encoding the status (strict or not)
of the base constraints obtained by direct examination of the
axioms (lines 5-10). Then, the consequences of the base con-
straints are computed, similarly as one would compute the
transitive closure of a relation (lines 11-15). There exists a
stratification iff the strict relation encoded inR is irreflexive,
that is iffR[i, i] 6= 2 for all i ∈ D (line 16). In that case, the
stratification corresponding to the smallest pre-order consis-
tent withR is extracted, i.e. predicates are put in the lowest
stratum consistent withR (lines 17-26).


3 Axioms Add Significant Expressive Power
It is clear that axioms add something to the expressive power
of PDDL. In order to determine how much power is added,
we will use thecompilability approach[19]. Basically, what
we want to determine is how concisely a planning task can
be represented if we compile the axioms away. Furthermore,
we want to know how long the corresponding plans in the
compiled planning task will become.


3By | · | we denote the cardinality of a set.


In the following, we take aPDDLX planning domain de-
scription to be a tuple∆ = 〈C,B,D, A,O〉, whereC is the
set of constant symbols,B is the set of basic predicates,D is
the set of derived predicates,A is a stratified axiom set as in
Definition 1, andO is a set of action descriptions (with the
mentioned restriction on the appearance in atomic effects of
the symbols inD). A PDDLX planning instanceor task is
a tupleΠ = 〈∆, I,G〉, where∆ is the domain description,
andI andG are the initial state (a set of ground basic atoms)
and goal descriptions (a formula), respectively. The result
of applying an action in a (basic) state and what constitutes
a valid plan (sequence of actions) for a given planning task
are defined in the usual way[2], except that the modeling re-
lation in Definition 5 is used in place of the usual one. By
a PDDL domain description and planning instances we mean
those without any axioms and derived predicates, i.e., aPDDL
domain description has the form〈C,B, ∅, ∅, O〉.


We now usecompilation schemes[19] to translatePDDLX
domain descriptions toPDDL domain descriptions. Such
schemes are functions that translate domain descriptions be-
tween planning formalisms without any restriction on their
computational resources but the constraint that the target do-
main should be only polynomially larger than the original.4


Definition 6 A compilation scheme fromX to Y is a tuple
of functionsf = 〈fδ, fi, fg〉 that induces a functionF from
X -instancesΠ = 〈∆, I,G〉 toY-instancesF (Π) as follows:


F (Π) =
〈
fδ(∆), I ∪ fi(∆),G ∧ fg(∆)


〉
and satisfies the following conditions:


1. there exists a plan forΠ iff there exists a plan forF (Π),


2. and the size of the results offδ, fi, andfg is polynomial
in the size of their argument∆.


In addition, we measure the size of the corresponding plans
in the target formalism.5


Definition 7 If a compilation schemef has the property that
for every planP solving an instanceΠ, there exists a plan
P ′ solvingF (Π) such that||P ′|| ≤ c× ||P ||+ k for positive
integer constantsc and k, then f is a compilation scheme
preserving plan size linearly, and if||P ′|| ≤ p(||P ||, ||Π||) for
some polynomialp, thenf is acompilation scheme preserving
plan size polynomially.


From a practical point of view, one can regard compilabil-
ity preservingplan size linearlyas an indication that the target
formalism isat least as expressiveas the source formalism.
Conversely, if asuper-linearblowup of the plans in the target
formalism is required, this indicates that the source formal-
ism is more expressivethan the target formalism—a planning
algorithm for the target formalism would be forced to gener-
ate significantly longer plans for compiled instances, making
it probably infeasible to solve such instances. If plans are re-
quired to grow evensuper-polynomially, then the increase of
expressive power must be dramatic. Incidentally, exponential
growth of plan size is necessary to compile axioms away.


4We use here a slightly simplified definition of compilability.
5The size of an instance, domain description, plan, etc. is de-


noted by|| · ||.







In order to investigate the compilability betweenPDDL and
PDDLX , we will analyze restricted planning problems such
as the1-step planning problemand thepolynomial step plan-
ning problem. The former is the problem of whether there
exists a 1-step plan to solve a planning task, the latter is the
problem whether there exists a plan polynomially sized (for
some fixed polynomial) in the representation of the domain
description. From the results on the computational complex-
ity of pure DATALOG andDATALOG with stratified negation
[6], the next theorem is immediate.


Theorem 1 The 1-step planning problem forPDDLX is
EXPTIME-complete, even if all axioms are in pureDATALOG.


If we now considerPDDL planning tasks, it turns out that
the planning problem is considerably easier, even if we allow
for polynomial length plans. Since guessing a plan of poly-
nomial size and verifying it can easily be done in polynomial
space, the polynomial stepPDDL planning problem is obvi-
ously in PSPACE. Taking in addition Vardi’s[20] result into
account that first-order query evaluation over a finite database
is PSPACE-complete, hardness follows as well.


Theorem 2 The polynomial step planning problem forPDDL
is PSPACE-complete.


From these two statements it follows immediately that it is
very unlikely that there exists apolynomial timecompilation
scheme fromPDDLX to PDDL preserving plan size polyno-
mially. Otherwise, it would be possible to solve all prob-
lems requiring exponential time in polynomial space, which
is considered as quite unlikely. As argued, however, by Nebel
[19], if we want to make claims aboutexpressiveness, then we
should not take the computational resources of the compila-
tion scheme into account but allow for computationally un-
constrained transformations. Interestingly, even allowing for
such unconstrained compilation schemes changes nothing.


Theorem 3 Unless EXPTIME= PSPACE, there is no compi-
lation scheme fromPDDLX (even restricted to pureDATALOG
axioms) toPDDL preserving plan size polynomially.


Proof Sketch. We use a proof idea similar to the one Kautz
and Selman[13] used to prove that approximations of logi-
cal theories of a certain size are not very likely to exist. By
using aDATALOG theory in order to describe all instances
of the linearly bounded alternating Turing machineaccep-
tance problem up to a certain size, which in its general form
is EXPTIME-complete[5], we get apolynomial advice string
[12] if a compilation scheme fromPDDLX to PDDL preserv-
ing plan size polynomially exists. This would imply that EX-
PTIME ⊆ PSPACE/poly. However, by Karp and Lipton’s
[12] results, this implies that EXPTIME= PSPACE.


4 Compilations with Exponential Results
While it is impossible to find a concise equivalentPDDL plan-
ning instance that guarantees short plans, it is possible to
come up with a poly-size instance which may have expo-
nentially longer plans in the worst case. Such compilation
schemes have been described by e.g. Gazen and Knoblock
[10] and Garagnani[9] under severe restrictions on the use
of negated derived predicates. Specifically, these schemes do
not work if negated derived predicates appear anywhere in the


Figure 1 PDDL instances induced byf


1. (: predicates ; all predicates inB ∪ D
2. (done1) . . . (donen)
3. (fixed0) . . . (fixedn)
4. (new))
for eachi ∈ {1, . . . , n}


5. (: action stratumi
6. : parameters ()
7. : precondition (and (fixedi−1) (not (fixedi)))
8. : effect (and (donei))
9. (forall (~xi,1)


10. (when (and (fi,1 ?~xi,1) (not (di,1 ?~xi,1)))
11. (and (di,1 ?~xi,1) (new))))
12. . . .
13. (forall (~xi,|Ai|)
14. (when (and (fi,|Ai| ?~xi,|Ai|) (not (di,|Ai| ?~xi,|Ai|)))
15. (and (di,|Ai| ?~xi,|Ai|) (new))))))
16.(: action fixpointi
17. : parameters ()
18. : precondition (donei)
19. : effect (and (when (not(new)) (fixedi))
20. (not(new))
21. (not (donei))))


for eacho ∈ O
22.(: action NAME(o)
23. : parameters PARAMETERS(o)
24. : precondition (and PRECONDITION(o) (fixedk))
25. : effect (and EFFECT(o)
26. (not (fixedm)) . . . (not (fixedn))
27. (not (donem)) . . . (not (donen))
28. (forall ~xm,1 (not (dm,1 ?~xm,1)))
29. . . .
30. (forall ~xn,|An| (not (dn,|An| ?~xn,|An|)))))


Wherek = max({i | somedi,j occurs in PRECONDITION(o)}∪{0}) and
m = min({i | a predicate in somefi,j is modified in EFFECT(o)}∪{n+1})


31.(: init I ∪ (fixed0))
32.(: goal (and G (fixedn)))


planning task,6 and the latter scheme[9] is further restricted
to pureDATALOG axioms.


An interesting contrasting approach is that of Davidson and
Garagnani[7]. They propose to compile pureDATALOG ax-
ioms solely into conditional effects, which means that the re-
sulting plans will have exactly the same length. However, as
is implied by Theorem 3, their domain description suffers a
super-polynomial growth.


We now specify a generally applicable compilation scheme
producing poly-size instances, which we will use as a base-
line in our performance evaluation. In contrast to the schemes
mentioned above, it complies with the stratified semantics
specified in Section 2 while dealing with negated occurrences
of derived predicates anywhere in the planning task.


Theorem 4 There exists a polynomial time compilation
schemef = 〈fδ, fi, fg〉, such that for everyPDDLX do-
main description∆ = 〈C,B,D, A,O〉: ||fi(∆)|| = c1 and
||fg(∆)|| = c2 for some constantsc1 and c2, andfδ(∆) =
〈C,B′, ∅, ∅, O′〉 is a PDDL domain with|B′|≤|B| +3 |D| +2
and with||O′|| ≤ p(||O||, ||A||) for some polynomialp.


Proof Sketch. Figure 4 shows the main elements of the
PDDL instances induced byf. f computes a stratification
{Ai, 1 ≤ i ≤ n} of the set of axiomsA, as explained in
Section 2, where in stratumi, each axiomai,j is of the form
(: derived (di,j ?~xi,j) (fi,j ?~xi,j)) for 1 ≤ j ≤|Ai |. f


6This remains true even if negation is compiled away as per the
Gazen and Knoblock method[10].







encodes each stratum as an extra actionstratumi (see lines
5-15 in Figure 4) which applies all axiomsai,j at this stratum
in parallel, records that this was done (donei) and whether
anything new (new) was derived in doing so. Eachai,j is
encoded as a universally quantified and conditional effect of
stratumi—see lines 9-15. To ensure that the precedence be-
tween strata is respected,stratumi is only applicable when
the fixed point for the previous stratum has been reached (i.e.
whenfixedi−1) and the fixed point for the current stratum
has not (i.e. when(not (fixedi)))—see line 7.f encodes the
fixpoint computation at each stratumi using an extra action
fixpointi, which is applicable after a round of one or more
applications ofstratumi (i.e., whendonei is true), asserts
that the fixed point has been reached (i.e.fixedi) whenever
nothing new has been derived during this last round, and re-
setsnew anddonei for the next round—see lines 16-21. Next,
the precondition and effect of each action descriptiono ∈ O
are augmented as follows (see lines 22-30). Let0 ≤ k ≤ n be
the highest stratum of any derived predicate appearing in the
precondition ofo, or 0 if there is no such predicate. Before
applyingo, we must make sure that the fixed point for that
stratum has been computed by addingfixedk to the precon-
dition. Similarly, let1 ≤ m ≤ n + 1 be the lowest stratum
such that some predicate in the antecedent of some axiom in
Am is modified in the effect ofo, or n + 1 if there is none.
After applyingo, we may need to re-compute the fixed points
for the strata abovem, that is, the effect must resetfixed,
done, and the value of all derived propositions, at stratam
and above. Finally,fixed0 holds initially, and the goal re-
quiresfixedn to be true. The fact thatf preserves domain
description size polynomially, and the bounds given in theo-
rem 4, follow directly from the construction.


It is obvious that a planP for a planning taskΠ can be
recovered from a planP ′ for the compiled planning task
F (Π), by simply stripping all occurrences ofstratum and
fixpoint actions. In the worst case of course, there is
no polynomialp such that||P ′|| ≤ p(||P ||, ||Π||). Indeed,
the worst-case is obtained when, initially and after each ac-
tion from P , all derived predicates need to be (re)computed
and only one proposition is ever derived per application of
stratumi actions. Even if the planner is able to interleave
as fewfixpointi actions as possible with thestratumi ac-
tions, this still leads to a plan of length||P ′|| = ||P || +
(||P ||+ 1)(


∑n
i=1(|Di| +3)) = ||P ||+ (||P ||+ 1)(3n+ |D|),


whereD denotes the set of all instances of predicates inD.
Observe thatD is not polynomially bounded in|D| and|C|.


5 Planning: With or Without Axioms?
The absence of a polynomial time compilation scheme pre-
serving plan size linearly not only indicates that axioms bring
(much needed) expressive power, but it also suggests that ex-
tending a planner to explicitly deal with axioms may lead to
much better performance than using a compilation scheme
with the original version of the planner. To confirm this hy-
pothesis, we extended theFF planner[11] with a straight-
forward implementation of axioms—we call this extension
FFX—and compared results obtained byFFX on PDDLX in-
stances with those obtained byFF on thePDDL instances pro-
duced via compilation withf.


FFX transforms each axiom(: derived(d ?~x)(f ?~x)) into
an operator with parameters(?~x), precondition(f ?~x) and
effect(d ?~x), with a flag set to distinguish it from a “normal”
operator. During the relaxed planning process thatFF per-
forms to obtain its heuristic function, the axiom actions are
treated as normal actions and can be chosen for inclusion in
a relaxed plan. However, the heuristic value only counts the
number ofnormalactions in the relaxed plan. During the for-
ward searchFF performs, only normal actions are considered;
after each application of such an action, the axiom actions are
applied so as to obtain the successive fixed points associated
with the stratification computed by Algorithm 1.


One domain we chose for our experiments is the usual
Blocks World (BW) with 4 operators. In contrast to most
other common benchmarks, inBW there is a natural distinc-
tion between basic and derived predicates; in particularBW is
the only common benchmark domain we are aware of where
the stratification of the axioms requires more than one stra-
tum. The basic predicates areon andontable, and the de-
rived ones areabove andholding (stratum 1), as well as
clear and handempty (stratum 2) whose axiomatisations
use the negation ofholding. above is only used in goal
descriptions. For the experiment labelledBW-1 in the fig-
ures below, we generated 30 random initial states for each
sizen = 2 . . . 10 and took the goal that any block initially
on the table had to be above all those that were initially not.
Note that expressing the resulting goal usingon andontable
would require exponential space, highlighting once more the
utility of derived predicates. As shown in the figure, the me-
dian run-time ofFFX shows a significant improvement over
that ofFF+f. The plans found byFF+f in this experiment were
an order of magnitude longer than those found byFFX . The
experiment labelledBW-2 shows, forn = 2 . . . 42, the spe-
cial case of those instances for which the initial state has only
one tower. Here the improvement in run time is dramatic, as
FFX finds the optimal plans whose length is only linear inn.


Another domain we ran experiments on is the challenging
Power Supply Restoration (PSR) benchmark[4], which is de-
rived from a real-world problem in the area of power distribu-
tion. The domain description requires a number of complex,
recursive, derived predicates to axiomatize the power flow,
[4]. We considered a version of the benchmark without any
uncertainty for which the goal is to resupply all resuppliable
lines. For each numbern = 1 to 7 feeders, we generated 100
random networks with a maximum of 3 switches per feeder
and with 30% faulty lines. The third figure above compares
the median run times ofFFX and FF+f as a function ofn.
Again the improvement in performance resulting from han-
dling axioms explicitly is undeniable. In this experiment, the
plan length does not vary much withn: with our parameters
for the random instances generation, it is clustered around 5
actions forPDDLX instances, and around 50 for the compiled
instances. Yet this makes all the difference between what is
solvable in reasonable time and what is not.


Although the domains in these experiments are by no
means chosen to show off the worst-case for the compilation
scheme, they nevertheless illustrate its drawbacks. The dif-
ference of performance we observe is due to the facts that
compilation increases the branching factor, increases the plan
length, and obscures the computation of the heuristic.
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Other published compilation schemes[10; 9] are not ap-
plicable to the above domains whose descriptions involve
negated derived predicates. The exponential space transfor-
mation by Davidson and Garagnani[7] is applicable toBW,
but was unable to cope with problems larger thann = 4 be-
cause it substitutes for their definitions all occurrences of non-
recursive derived predicates until none remains. This turns
preconditions intoADL constructs that quickly become too
complex forFF’s pre-processing step to compile them away
in reasonable time, in difference to the experiments described
above where pre-processing time was negligible.


6 Conclusion


As reflected by recent endeavours in the international plan-
ning competitions, there is a growing (and, in our opinion, de-
sirable) trend towards more realistic planning languages and
benchmark domains. In that context, it is crucial to determine
which additional language features are particularly relevant.
The main contribution of this paper is to give theoretical and
empirical evidence of the fact that axiomsare important, from
both an expressivity and efficiency perspective. In addition,
we have provided a clear formal semantics forPDDL axioms,
identified a general and easily testable criterion for axiom sets
to have an unambiguous meaning, and given a compilation
scheme which is more generally applicable than those previ-
ously published (and also more effective in conjunction with
forward heuristic search planners likeFF).


Future work will include more extensive empirical stud-
ies involving a more elaborate treatment of axioms withinFF
and planners of different types, as well as the extension of
derived predicates and axioms to the context of the numeri-
cal and temporal language features recently introduced with
PDDL 2.1. Axioms have long been an integral part of action
formalisms in the field of reasoning about action and change
where, much beyond the inference of derived predicate con-
sidered here, they form the basis for elegant solutions to the
frame and ramification problems, see e.g.[16]. It is our
hope that the adoption ofPDDL axioms will eventually en-
courage the planning community to make greater use of these
formalisms.
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